The microstructure of the PbZrTiO (PZT) films is known to influence the ferroelectric properties, but so far mainly the effect of the deposition conditions of the PZT has been investigated. To our knowledge, the influence of the underlying electrode layer and the mechanisms leading to changes in the PZT microstructure have not been explored. Using LaNiO (LNO) as the bottom electrode material, we investigated the evolution of the PZT microstructure and ferroelectric properties for changing LNO pulsed-laser deposition conditions.
View Article and Find Full Text PDFExtreme ultraviolet and soft x-ray wavelengths have ever-increasing applications in photolithography, imaging, and spectroscopy. Adaptive schemes for wavefront correction at such a short wavelength range have recently gained much attention. In this Letter we report, to the best of our knowledge, the first demonstration of a functional actuator based on piezoelectric thin films.
View Article and Find Full Text PDFLanthanum and lanthanum nitride thin films were deposited by magnetron sputtering onto silicon wafers covered by natural oxide. and real-time synchrotron radiation experiments during deposition reveal that lanthanum crystallizes in the face-centred cubic bulk phase. Lanthanum nitride, however, does not form the expected NaCl structure but crystallizes in the theoretically predicted metastable wurtzite and zincblende phases, whereas post-growth nitridation results in zincblende LaN.
View Article and Find Full Text PDFWe studied the structure and optical properties of B(4)C/Mo/Y/Si multilayer systems. Using extended x-ray absorption fine structure measurements at the Y and Mo K-edge, the structure of the subnanometer thick Y layer and the underlying Mo layer were analyzed. It was found that even a 0.
View Article and Find Full Text PDFThe growth behavior of B(4)C interlayers deposited at the interfaces of Mo/Si multilayers was investigated using x-ray photoemission spectroscopy, x-ray reflectivity, and x-ray diffraction measurements. We report an asymmetry in the formation of B(4)C at the B(4)C-on-Mo interface compared to the B(4)C-on-Si interface. X-ray photoelectron spectroscopy (XPS) depth profiling shows that for B(4)C-on-Mo the formed stoichiometry is close to expectation (4:1 ratio), while for B(4)C-on-Si it is observed that carbon diffuses from the B(4)C interfaces into the multilayer, resulting in nonstochiometric growth (>4:1).
View Article and Find Full Text PDF