Publications by authors named "Andrey Y Gorokhovatsky"

The calcium cation is a crucial signaling molecule involved in numerous cellular pathways. Beyond its role as a messenger or modulator in intracellular cascades, calcium's function in excitable cells, including nerve impulse transmission, is remarkable. The central role of calcium in nervous activity has driven the rapid development of fluorescent techniques for monitoring this cation in living cells.

View Article and Find Full Text PDF

The discovery of the bioluminescence pathway in the fungus Neonothopanus nambi enabled engineering of eukaryotes with self-sustained luminescence. However, the brightness of luminescence in heterologous hosts was limited by performance of the native fungal enzymes. Here we report optimized versions of the pathway that enhance bioluminescence by one to two orders of magnitude in plant, fungal and mammalian hosts, and enable longitudinal video-rate imaging.

View Article and Find Full Text PDF

Integral membrane proteins are important components of a cell. Their structural and functional studies require production of milligram amounts of proteins, which nowadays is not a routine process. Cell-free protein synthesis is a prospective approach to resolve this task.

View Article and Find Full Text PDF

The lack of tools to monitor the dynamics of (pseudo)hypohalous acids in live cells and tissues hinders a better understanding of inflammatory processes. Here we present a fluorescent genetically encoded biosensor, Hypocrates, for the visualization of (pseudo)hypohalous acids and their derivatives. Hypocrates consists of a circularly permuted yellow fluorescent protein integrated into the structure of the transcription repressor NemR from Escherichia coli.

View Article and Find Full Text PDF

Bioluminescence is found across the entire tree of life, conferring a spectacular set of visually oriented functions from attracting mates to scaring off predators. Half a dozen different luciferins, molecules that emit light when enzymatically oxidized, are known. However, just one biochemical pathway for luciferin biosynthesis has been described in full, which is found only in bacteria.

View Article and Find Full Text PDF

Spectral diversity of fluorescent proteins, crucial for multiparameter imaging, is based mainly on chemical diversity of their chromophores. Recently we have reported, to our knowledge, a new green fluorescent protein WasCFP-the first fluorescent protein with a tryptophan-based chromophore in the anionic state. However, only a small portion of WasCFP molecules exists in the anionic state at physiological conditions.

View Article and Find Full Text PDF

A novel luciferin from a bioluminescent Siberian earthworm Fridericia heliota was recently described. In this study, the Fridericia oxyluciferin was isolated and its structure elucidated. The results provide insight into a novel bioluminescence mechanism in nature.

View Article and Find Full Text PDF

Background: The ratio of NAD(+)/NADH is a key indicator that reflects the overall redox state of the cells. Until recently, there were no methods for real time NAD(+)/NADH monitoring in living cells. Genetically encoded fluorescent probes for NAD(+)/NADH are fundamentally new approach for studying the NAD(+)/NADH dynamics.

View Article and Find Full Text PDF

High-performance sensors for reactive oxygen species are instrumental to monitor dynamic events in cells and organisms. Here, we present HyPer-3, a genetically encoded fluorescent indicator for intracellular H2O2 exhibiting improved performance with respect to response time and speed. HyPer-3 has an expanded dynamic range compared to HyPer and significantly faster oxidation/reduction dynamics compared to HyPer-2.

View Article and Find Full Text PDF

Hydrogen peroxide is an important second messenger controlling intracellular signaling cascades by selective oxidation of redox active thiolates in proteins. Changes in intracellular [H(2)O(2)] can be tracked in real time using HyPer, a ratiometric genetically encoded fluorescent probe. Although HyPer is sensitive and selective for H(2)O(2) due to the properties of its sensing domain derived from the Escherichia coli OxyR protein, many applications may benefit from an improvement of the indicator's dynamic range.

View Article and Find Full Text PDF

GFP-like fluorescent proteins (FPs) are crucial in biological and biomedical studies. The majority of FP purification techniques either include multiple time-consuming chromatography steps with a low yield of the desired product or require prior protein modification (addition of special tags). In the present work, we propose an alternative ethanol extraction-based technique previously used for GFP purification and then modified for diverse FPs originated from different sources.

View Article and Find Full Text PDF

The purple chromoprotein (asFP595) from Anemonia sulcata belongs to the family of green fluorescent protein (GFP). Absorption and emission spectra of asFP595 are similar to those of a number of recently cloned GFP-like red proteins of the DsRed subfamily. The earlier proposed asFP595 chromophore structure [Martynov, V.

View Article and Find Full Text PDF

The bioluminescence emitted by Aequorea victoria jellyfish is greenish while its single bioluminescent photoprotein aequorin emits blue light. This phenomenon may be explained by a bioluminescence resonance energy transfer (BRET) from aequorin chromophore to green fluorescent protein (GFP) co-localized with it. However, a slight overlapping of the aequorin bioluminescence spectrum with the GFP absorption spectrum and the absence of marked interaction between these proteins in vitro pose a question on the mechanism providing the efficient BRET in A.

View Article and Find Full Text PDF

The yellow fluorescent protein (zFP538) from coral Zoanthus sp. belongs to a family of green fluorescent protein (GFP). Absorption and emission spectra of zFP538 show an intermediate bathochromic shift as compared with a number of recently cloned GFP-like red fluorescent and nonfluorescent chromoproteins of the DsRed subfamily.

View Article and Find Full Text PDF

Here we describe a homogeneous assay for biotin based on bioluminescence resonance energy transfer (BRET) between aequorin and enhanced green fluorescent protein (EGFP). The fusions of aequorin with streptavidin (SAV) and EGFP with biotin carboxyl carrier protein (BCCP) were purified after expression of the corresponding genes in Escherichia coli cells. Association of SAV-aequorin and BCCP-EGFP fusions was followed by BRET between aequorin (donor) and EGFP (acceptor), resulting in significantly increasing 510 nm and decreasing 470 nm bioluminescence intensity.

View Article and Find Full Text PDF

Green fluorescent protein (GFP) is widely used as an excellent reporter module of the fusion proteins. The unique structure of GFP allows isolation of the active fluorescent protein directly from the crude cellular sources by extraction with organic solvents. We demonstrated the stable expression of four short polypeptides fused to GFP in Escherichia coli cells, including antimicrobial cationic peptides, which normally kill bacteria.

View Article and Find Full Text PDF