Multilayered [Cu(3 nm)/FeNi(100 nm)]/Cu(150 nm)/FeNi(10 nm)/Cu(150 nm)/FeNi(10 nm)/Cu(150 nm)/[Cu(3 nm)/FeNi(100 nm)] structures were obtained by using the magnetron sputtering technique in the external in-plane magnetic field. From these, multilayer magnetoimpedance elements were fabricated in the shape of elongated stripes using the lift-off lithographic process. In order to obtain maximum magnetoimpedance (MI) sensitivity with respect to the external magnetic field, the short side of the rectangular element was oriented along the direction of the technological magnetic field applied during the multilayered structure deposition.
View Article and Find Full Text PDFThermoelectric phenomena, such as the Anomalous Nernst and Longitudinal Spin Seebeck Effects, are promising for sensor applications in the area of renewable energy. In the case of flexible electronic materials, the request is even larger because they can be integrated into devices having complex shape surfaces. Here, we reveal that Pt promotes an enhancement of the thermoelectric response in Co-rich ribbon/Pt heterostructures due to the spin-to-charge conversion.
View Article and Find Full Text PDFThe rectangular elements in magnetoimpedance (MI) configuration with a specific nanocomposite laminated structure based on FeNi and Cu layers were prepared by lift-off lithographic process. The properties of such elements are controlled by their shape, the anisotropy induced during the deposition, and by effects associated with the composite structure. The characterizations of static and dynamic properties, including MI measurements, show that these elements are promising for sensor applications.
View Article and Find Full Text PDFA description of the method of magnetoimpedance tomography is presented. This method is based on the analysis of the frequency dependences of the impedance obtained in magnetic fields of various strengths. It allows one to determine the distribution of electrical and magnetic properties over the cross-section of the conductor, as well as their dependence on the magnetic field.
View Article and Find Full Text PDFFeNi films of different thickness and FeNi/(Fe, Co)/FeNi trilayers were prepared by magnetron sputtering deposition onto glass substrates. The permalloy films had a columnar microstructure. The detailed analysis of the magnetic properties based on the magnetic and magneto-optical measurements showed that at thicknesses exceeding a certain critical thickness, hysteresis loops acquire a specific shape and the coercive force of the films increase sharply.
View Article and Find Full Text PDFMagnetometry and ferromagnetic resonance are used to quantitatively study magnetic anisotropy with an easy axis both in the film plane and perpendicular to it. In the study of single-layer and multilayer permalloy films, it is demonstrated that these methods make it possible not only to investigate the average field of perpendicular and in-plane anisotropy, but also to characterize their inhomogeneity. It is shown that the quantitative data from direct integral and local measurements of magnetic anisotropy are consistent with the direct and indirect estimates based on processing of the magnetization curves.
View Article and Find Full Text PDFSoft magnetic materials are widely requested in electronic and biomedical applications. Co-based amorphous ribbons are materials which combine high value of the magnetoimpedance effect (MI), high sensitivity with respect to the applied magnetic field, good corrosion stability in aggressive environments, and reasonably low price. Functional properties of ribbon-based sensitive elements can be modified by deposition of additional magnetic and non-ferromagnetic layers with required conductivity.
View Article and Find Full Text PDFMultilayered [FeNi (100 nm)/Cu (3 nm)]/Cu (500 nm)/[Cu (3 nm)/[FeNi (100 nm)] structures were used as sensitive elements of the magnetoimpedance (MI) sensor prototype for model experiments of the detection of magnetic particles in blood vessel. Non-ferromagnetic cylindrical polymer rod with a small magnetic inclusion was used as a sample mimicking thrombus in a blood vessel. The polymer rod was made of epoxy resin with an inclusion of an epoxy composite containing 30% weight fraction of commercial magnetite microparticles.
View Article and Find Full Text PDFMagnetically soft [Ti(6)/FeNi(50)]/Ti(6)/Cu(500)/Ti(6)/[FeNi(50)/Ti(6)] nanostructured multilayered elements were deposited by rf-sputtering technique in the shape of elongated stripes. The easy magnetization axis was oriented along the short size of the stripe using deposition in the external magnetic field. Such configuration is important for the development of small magnetic field sensors employing giant magnetoimpedance effect (GMI) for different applications.
View Article and Find Full Text PDFSensors (Basel)
March 2018
Hydrogels are biomimetic materials widely used in the area of biomedical engineering and biosensing. Ferrogels (FG) are magnetic composites capable of functioning as magnetic field sensitive transformers and field assisted drug deliverers. FG can be prepared by incorporating magnetic nanoparticles (MNPs) into chemically crosslinked hydrogels.
View Article and Find Full Text PDFNanostructured FeNi-based multilayers are very suitable for use as magnetic sensors using the giant magneto-impedance effect. New fields of application can be opened with these materials deposited onto flexible substrates. In this work, we compare the performance of samples prepared onto a rigid glass substrate and onto a cyclo olefin copolymer flexible one.
View Article and Find Full Text PDF