Publications by authors named "Andrey V Shernyukov"

Being a low-toxic and hydrophilic representative of TAM, OX063 has shown its suitability for in-vivo and in-cell EPR experiments and design of spin labels. Using C labeling, we investigated the course of oxidative degradation of OX063 into quinone-methide (QM) under the influence of superoxide as well as further thiol-promoted reduction of QM into TAM radical, which formally corresponds to substitution of a carboxyl function by a hydroxyl group. We found these transformations being quantitative in model reactions mimicking specific features of biological media and confirmed the presence of these reactions in the blood and liver homogenate of mice in vitro.

View Article and Find Full Text PDF

8-Oxo-7,8-dihydroguanine (oxoG), an abundant DNA lesion, can mispair with adenine and induce mutations. To prevent this, cells possess DNA repair glycosylases that excise either oxoG from oxoG:C pairs (bacterial Fpg, human OGG1) or A from oxoG:A mispairs (bacterial MutY, human MUTYH). Early lesion recognition steps remain murky and may include enforced base pair opening or capture of a spontaneously opened pair.

View Article and Find Full Text PDF

Noncatalytic halogenation of adamantane (AdH) with bromine or iodine monochloride was found to proceed according to the cluster mechanism featuring high kinetic order with respect to the halogen and a sharp decrease in the calculated energy barrier when additional halogen molecules are involved in the quantum chemical system. In the reaction with Br, 1-AdBr formed selectively. This reaction proved to be first order in terms of AdH and approximately seventh order in Br, and its rate does not depend on the rising concentration of HBr.

View Article and Find Full Text PDF

The mechanism of the noncatalytic bromination of carboranes was studied experimentally and theoretically. We found that the reactions of - and -carboranes and with elemental bromine are first order in the substrate but unusually high (approximately fifth) order in bromine. The calculated energy barriers of these reactions decrease sharply as more bromine molecules are added to the quantum-chemical system.

View Article and Find Full Text PDF

Intrinsically disordered proteins play a central role in dynamic regulatory and assembly processes in the cell. Recently, a human κ-casein proteolytic fragment called lactaptin (8.6 kDa) was found to induce apoptosis of human breast adenocarcinoma MCF-7 and MDA-MB-231 cells with no cytotoxic activity toward normal cells.

View Article and Find Full Text PDF

This article presents new data on the properties of the diastereomers of a mono-substituted phosphoryl guanidine trideoxyribonucleotides d(TpCp*A) [1,2]. The data include information on isolation, identification, treatment with snake venom phosphodiesterase and structural analysis by 1D and 2D NMR spectroscopy and restrained molecular dynamics analysis. The data can be used for preparation, analysis, application of phosphoryl guanidine oligonucleotide and for development of new nucleic acids derivatives.

View Article and Find Full Text PDF

Experiments show that 1,1'-bi-2-naphthol (BINOL) undergoes facile C1-C1' bond cleavage under action of triflic acid at temperatures above 0 °C to give mainly 2-naphthol along with oligomeric material. CASSCF and MRMP//CASSCF computations have demonstrated unambiguously that this unusual mode of scission of the biaryl bond can occur in the C1,C1'-diprotonated form of BINOL via a mechanism involving homolytic cleavage prompted by the intramolecular electrostatic repulsion. These findings also provide insights into the mechanism of a comparatively easy thermal cleavage of BINOL, implying the intermediacy of its neutral diketo form.

View Article and Find Full Text PDF

Recently, a new type of nucleic acid analogues with modified phosphate group, namely, phosphoryl guanidine oligonucleotides, has been described. In the present work, we assess the difference between diastereomers of a mono-substituted phosphoryl guanidine oligonucleotide and analyze their resistance to nuclease digestion. Individual diastereomers ('fast' and 'slow') of a trideoxynucleotide d (TpCp*A) were isolated by reverse-phase HPLC.

View Article and Find Full Text PDF

The kinetics and mechanism of concurrent bromo-de-protonation and bromo-de-tert-butylation of 1,3,5-tri-tert-butylbenzene at different bromine concentrations were studied experimentally and theoretically. Both reactions have high order in bromine (experimental kinetic orders ∼5 and ∼7, respectively). According to quantum chemical DFT calculations, such high reaction orders are caused by participation of clustered polybromide anions Br2n-1- in transition states.

View Article and Find Full Text PDF

DNA damage can affect various regulatory elements of the genome, with the consequences for DNA structure, dynamics, and interaction with proteins remaining largely unexplored. We used solution NMR spectroscopy, restrained and free molecular dynamics to obtain the structures and investigate dominant motions for a set of DNA duplexes containing CpG sites permuted with combinations of 5-methylcytosine (mC), the primary epigenetic base, and 8-oxoguanine (oxoG), an abundant DNA lesion. Guanine oxidation significantly changed the motion in both hemimethylated and fully methylated DNA, increased base pair breathing, induced BI→BII transition in the backbone 3' to the oxoG and reduced the variability of shift and tilt helical parameters.

View Article and Find Full Text PDF

The behavior of 1,1'-bi-2-naphthol (BINOL) in variety of (super)acid media has been studied by NMR. The results are combined with the theoretical (DFT) study of the role of mono- and diprotonated forms of BINOL in the acid-catalyzed atropisomerization of this compound. It is demonstrated that the process of enantiomeric configuration exchange proceeds mainly via internal rotation around the C1(sp)-C1'(sp) bond in intermediates such as C1-monoprotonated keto or C1,C1'-diprotonated forms of BINOL, depending on the acidity level.

View Article and Find Full Text PDF

A new class of compounds featuring a camphor moiety has been discovered that exhibits potent inhibitory activity against influenza A(H1N1)pdm09 and A(H5N1) viruses. The synthesized compounds were characterized by spectroscopic analysis; in addition the structures of compound 2 and 14 were elucidated by the X-ray diffraction technique. Structure-activity relationship studies have been conducted to identify the 1,7,7-trimethylbicyclo[2.

View Article and Find Full Text PDF

The noncatalytic bromination of benzene is shown experimentally to require high 5-14 M concentrations of bromine to proceed at ambient temperatures to form predominantly bromobenzene, along with detectable (<2%) amounts of addition products such as tetra and hexabromocyclohexanes. The kinetic order in bromine at these high concentrations is 4.8 ± 0.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on creating new semi-synthetic versions of deoxycholic acid (DCA) with specific chemical modifications in two of its rings.
  • - These modified compounds were tested for their biological activity against cancer cells and murine macrophage-like cells.
  • - Results indicate that adding a 9(11)-double bond or an isoxazole ring enhances the compounds' effectiveness in inhibiting cancer cell growth.
View Article and Find Full Text PDF