Despite the identification of several dozen genetic loci associated with ischemic stroke (IS), the genetic bases of this disease remain largely unexplored. In this research we present the results of genome-wide association studies (GWAS) based on classical statistical testing and machine learning algorithms (logistic regression, gradient boosting on decision trees, and tabular deep learning model TabNet). To build a consensus on the results obtained by different techniques, the Pareto-Optimal solution was proposed and applied.
View Article and Find Full Text PDFThe genetic architecture of ischemic stroke (IS), which is one of the leading causes of death worldwide, is complex and underexplored. The traditional approach for associative gene mapping is genome-wide association studies (GWASs), testing individual single-nucleotide polymorphisms (SNPs) across the genomes of case and control groups. The purpose of this research is to develop an alternative approach in which groups of SNPs are examined rather than individual ones.
View Article and Find Full Text PDFComplex diseases that affect the functioning of the central nervous system pose a major problem for modern society. Among these, ischemic stroke (IS) holds a special place as one of the most common causes of disability and mortality worldwide. Furthermore, Alzheimer's disease (AD) ranks first among neurodegenerative diseases, drastically reducing brain activity and overall life quality and duration.
View Article and Find Full Text PDFTo date, there has been great progress in understanding the genetic basis of ischemic stroke (IS); however, several aspects of the condition remain underexplored, including the influence of genetic factors on post-stroke outcomes and the identification of causative loci. We proposed that an analysis of the results obtained from animal models of brain ischemia could be helpful. To this end, we developed a bioinformatic approach for exploring single-nucleotide polymorphisms (SNPs) in human orthologs of rat genes expressed differentially after induced brain ischemia.
View Article and Find Full Text PDFAlthough there has been great progress in understanding the genetic bases of ischemic stroke (IS), many of its aspects remain underexplored. These include the genetics of outcomes, as well as problems with the identification of real causative loci and their functional annotations. Therefore, analysis of the results obtained from animal models of brain ischemia could be helpful.
View Article and Find Full Text PDFWe performed an exhaustive pairwise comparison of whole-genome sequences of 3120 individuals, representing 232 populations from all continents and seven prehistoric people including archaic and modern humans. In order to reveal an intricate picture of worldwide human genetic relatedness, 65 million very rare single nucleotide polymorphic (SNP) alleles have been bioinformatically processed. The number and size of shared identical-by-descent (IBD) genomic fragments for every pair of 3127 individuals have been revealed.
View Article and Find Full Text PDFBackground: The imputation of genotypes increases the power of genome-wide association studies. However, the imputation quality should be assessed in each particular case. Nevertheless, not all imputation softwares control the error of output, e.
View Article and Find Full Text PDFNatural selection of beneficial genetic variants played a critical role in human adaptation to a wide range of environmental conditions. Northern Eurasia, despite its severe climate, is home to lots of ethnically diverse populations. The genetic variants associated with the survival of these populations have hardly been analyzed.
View Article and Find Full Text PDFBackground: GSTM1 gene deletion is one of the most known copy number polymorphisms in human genome. It is most likely caused by homologous recombination between the repeats flanking the gene. However, taking into account that the deletion has no crucial effects on human well-being, and the ability of other GSTMs to compensate for the lack of GSTM1, a role for additional factors affecting GSTM1 deletion can be proposed.
View Article and Find Full Text PDFAim: Cisplatin and its analogs are potent antitumor agents. However, their use is restricted by significant variability in tumor response and toxicity. There is a great need to identify genetic markers to predict the most important adverse events and patient outcomes.
View Article and Find Full Text PDFSeveral studies examined the fine-scale structure of human genetic variation in Europe. However, the European sets analyzed represent mainly northern, western, central, and southern Europe. Here, we report an analysis of approximately 166,000 single nucleotide polymorphisms in populations from eastern (northeastern) Europe: four Russian populations from European Russia, and three populations from the northernmost Finno-Ugric ethnicities (Veps and two contrast groups of Komi people).
View Article and Find Full Text PDFBackground: Extensive genome-wide analyses of many human populations, using microarrays containing hundreds of thousands of single-nucleotide polymorphisms, have provided us with abundant information about global genomic diversity. However, these data can also be used to analyze local variability in individual genomic regions. In this study, we analyzed the variability in two genomic regions carrying the genes of the GSTA and GSTM subfamilies, located on different chromosomes.
View Article and Find Full Text PDFBackground: The allele frequency patterns of the D1S80 variable number tandem repeat (VNTR) locus have been shown to be multimodal in many different human populations.
Aim: To explore the complex allele distribution of the D1S80 polymorphic locus in different populations comparing the derived single nucleotide polymorphism (SNP) rs16824398-D1S80 haplotype frequencies in samples of European (Russians), Asian (Yakuts) and sub-Saharan African origin.
Subjects And Methods: The D1S80 locus together with its 5'-flanking region including SNP rs16824398 was amplified using allele-specific polymerase chain reaction (PCR).
Background: It was demonstrated previously that the three-locus RFLP haplotype, TaqI B-TaqI D-TaqI A (B-D-A), at the DRD2 locus constitutes a powerful genetic marker and probably reflects the most ancient dispersal of anatomically modern humans.
Results: We investigated TaqI B, BclI, MboI, TaqI D, and TaqI A RFLPs in 17 contemporary populations of the East European Plain and Siberia. Most of these populations belong to the Indo-European or Uralic language families.