Cytometry A
January 2023
Molecular/cell level of gas exchange function assumes the accurate measurement of erythrocyte characteristics and rate constants concerning to molecules involved into the CO /O transport. Unfortunately, common hematology analyzers provide the measurement of eight indices of erythrocytes only and say little about erythrocyte morphology and nothing about rate constants of cellular function. The aim of this study is to demonstrate the ability of the Scanning Flow Cytometer (SFC) in the complete morphological analysis of mature erythrocytes and characterization of erythrocyte function via measurement of lysing kinetics.
View Article and Find Full Text PDFAnalysis of blood platelets encounters a number of different preanalytical issues, which greatly decrease the reliability and accuracy of routine clinical analysis. Modern hematology analyzers determine only four parameters relating to platelets. Platelet shape and dose-dependent activation parameters are outside the scope of commercial instruments.
View Article and Find Full Text PDFWe demonstrate a flow-cytometric method to measure length and diameter of single Escherichia coli cells with sub-diffraction precision. The method is based on the original scanning flow cytometer that measures angle-resolved light-scattering patterns (LSPs) of individual particles. We modeled the shape of E.
View Article and Find Full Text PDFA mathematical model of erythrocyte lysis in isotonic solution of ammonium chloride is presented in frames of a statistical approach. The model is used to evaluate several parameters of mature erythrocytes (volume, surface area, hemoglobin concentration, number of anionic exchangers on membrane, elasticity and critical tension of membrane) through their sphering and lysis measured by a scanning flow cytometer (SFC). SFC allows measuring the light-scattering pattern (indicatrix) of an individual cell over the angular range from 10 degrees to 60 degrees .
View Article and Find Full Text PDF