J Interv Card Electrophysiol
September 2012
The recent introduction of subcutaneous implantable cardioverter defibrillator (S-ICD) has raised attention about the potential of this technology for clinical use in daily clinical practice. We review the methods and results of the four studies conducted in humans for approval of this innovative technology for daily practice. Two studies using a temporary S-ICD system (acute human studies) were conducted to search for an appropriate lead configuration and energy requirements.
View Article and Find Full Text PDFAsian Cardiovasc Thorac Ann
December 2010
Radiofrequency ablation of atrioventricular nodal reentrant tachycardia is commonly guided by slow and sharp bipolar potentials of the atrioventricular slow nodal pathway. We optimized the morphology of the guiding potential by unipolar mapping of the slow nodal pathway. We identified a novel unipolar dual-component atrial electrogram at the anterior limb of the coronary sinus ostium.
View Article and Find Full Text PDFBackground: Implantable cardioverter-defibrillators (ICDs) prevent sudden death from cardiac causes in selected patients but require the use of transvenous lead systems. To eliminate the need for venous access, we designed and tested an entirely subcutaneous ICD system.
Methods: First, we conducted two short-term clinical trials to identify a suitable device configuration and assess energy requirements.