We present a novel method for analyzing brain functional networks using functional magnetic resonance imaging data, which involves utilizing consensus networks. In this study, we compare our approach to a standard group-based method for patients diagnosed with major depressive disorder (MDD) and a healthy control group, taking into account different levels of connectivity. Our findings demonstrate that the consensus network approach uncovers distinct characteristics in network measures and degree distributions when considering connection strengths.
View Article and Find Full Text PDFWe address the interpretability of the machine learning algorithm in the context of the relevant problem of discriminating between patients with major depressive disorder (MDD) and healthy controls using functional networks derived from resting-state functional magnetic resonance imaging data. We applied linear discriminant analysis (LDA) to the data from 35 MDD patients and 50 healthy controls to discriminate between the two groups utilizing functional networks' global measures as the features. We proposed the combined approach for feature selection based on statistical methods and the wrapper-type algorithm.
View Article and Find Full Text PDFForecasting a system's behavior is an essential task encountering the complex systems theory. Machine learning offers supervised algorithms, e.g.
View Article and Find Full Text PDFNeuronal brain network is a distributed computing system, whose architecture is dynamically adjusted to provide optimal performance of sensory processing. A small amount of visual information needed effortlessly be processed, activates neural activity in occipital and parietal areas. Conversely, a visual task which requires sustained attention to process a large amount of sensory information, involves a set of long-distance connections between parietal and frontal areas coordinating the activity of these distant brain regions.
View Article and Find Full Text PDF