Traditionally, for indoor radon testing, predominantly passive measurements have been used, typically applying the solid-state alpha track-etch method for long-term and the charcoal method for short-term measurements. However, increasingly, affordable consumer-grade active monitors have become available in the last few years, which can generate a concentration time series of an almost arbitrary duration. Firstly, we argue that consumer-grade monitors can well be used for quality-assured indoor radon assessment and consequent reliable decisions.
View Article and Find Full Text PDFSensors (Basel)
January 2024
Indoor radon measurements have been conducted in many countries worldwide for several decades. However, to date, there is a lack of a globally harmonized measurement standard. Furthermore, measurement protocols in the US (short-term tests for 2-7 days) and European Union countries (long-term tests for at least 2 months) differ significantly, and their metrological support is underdeveloped, as clear mathematical algorithms (criteria) and QA/QC procedures considering fundamental ISO/IEC concepts such as "measurement uncertainty" and "conformity assessment" are still absent.
View Article and Find Full Text PDFRadiat Prot Dosimetry
May 2023
The main trends of indoor radon regulation in Europe are expressed through the standard ISO 11665-8. This standard, however, ignores the short-term tests (2-7 days in practice)-the main tests in the USA, and instead requires conducting long-term tests only (2-12 months)-without any justification. Moreover, the temporal (key) uncertainty of indoor radon is ignored altogether, a fact that does not allow the assessment of a room's conformity with a normative at a given reliability (usually 95%).
View Article and Find Full Text PDFThere now exists a broad consensus among the European radon community members that long-term measurements are the best practice in managing the risk of indoor radon exposure. This, not with standing the fact that <1% of buildings have been tested in Europe so far. At the same time, US' experience over the years shows more effective regulation has been accomplished through tests that are short-term.
View Article and Find Full Text PDFSignificant temporal variations of radon and other air pollutants can be observed in any room, even one with permanently closed windows and doors. Therefore, a question arises: how can one assess the conformity of a room with a normative and make a reliable decision if the test lasts <1 year (days or months)? The measurement protocol fundamentally differs between Europe with its long-term testing tradition lasting several months, and the US where short-term tests of several days are more common. Neither the European nor the American protocols considers the temporal uncertainty of indoor radon, a factor that usually exceeds the instrumental uncertainty (including in long-term tests) and is 2-3 times higher the coefficient of variation (COV) commonly used to estimate temporal variations.
View Article and Find Full Text PDFJ Environ Radioact
March 2018
Mass measurements of indoor radon concentrations have been conducted for about 30 years. In most of the countries, a national reference/action/limit level is adopted, limiting the annual average indoor radon (AAIR) concentration. However, until now, there is no single and generally accepted international protocol for determining the AAIR with a known confidence interval, based on measurements of different durations.
View Article and Find Full Text PDFRadon exhalation rate from the soil surface can serve as an important criterion in the evaluation of radon hazard of the land. Recently published international standard ISO 11665-7 (2012) is based on the accumulation of radon gas in a closed container. At the same time since 1998 in Russia, as a part of engineering and environmental studies for the construction, radon flux measurements are made using an open charcoal chamber for a sampling duration of 3-5 h.
View Article and Find Full Text PDFThe mathematical apparatus and the experimental installation for the rapid determination of radon diffusion coefficient in various materials are developed. The single test lasts not longer than 18 h and allows testing numerous materials, such as gaseous and liquid media, as well as soil, concrete and radon-proof membranes, in which diffusion coefficient of radon may vary in an extremely wide range, from 1·10(-12) to 5·10(-5) m(2)/s. The uncertainty of radon diffusion coefficient estimation depends on the permeability of the sample and varies from about 5% (for the most permeable materials) to 40% (for less permeable materials, such as radon-proof membranes).
View Article and Find Full Text PDF