Publications by authors named "Andrey Stepanyuk"

Dendritic integration and neuronal firing patterns strongly depend on biophysical properties of synaptic ligand-gated channels. However, precise estimation of biophysical parameters of these channels in their intrinsic environment is complicated and still unresolved problem. Here we describe a novel method based on a maximum likelihood approach that allows to estimate not only the unitary current of synaptic receptor channels but also their multiple conductance levels, kinetic constants, the number of receptors bound with a neurotransmitter, and the peak open probability from experimentally feasible number of postsynaptic currents.

View Article and Find Full Text PDF

When dispersed and cultured in a multielectrode dish (MED), suprachiasmatic nucleus (SCN) neurons express fast oscillations of firing rate (FOFR; fast relative to the circadian cycle), with burst duration ∼10 min, and interburst interval varying from 20 to 60 min in different cells but remaining nevertheless rather regular in individual cells. In many cases, separate neurons in distant parts of the 1 mm recording area of a MED exhibited correlated FOFR. Neither the mechanism of FOFR nor the mechanism of their synchronization among neurons is known.

View Article and Find Full Text PDF

Patterns of short-term synaptic plasticity could considerably differ between synapses of the same axon. This may lead to separation of synaptic receptors transmitting either low- or high-frequency signals and, therefore, may have functional consequences for the information transfer in the brain. Here, we estimated a degree of such separation at hippocampal GABAergic synapses using a use-dependent GABAA receptor antagonist, picrotoxin, to selectively suppress a pool of GABAA receptors monosynaptically activated during the low-frequency stimulation.

View Article and Find Full Text PDF

A new method is described that accurately estimates kinetic constants, conductance and number of ion channels from macroscopic currents. The method uses both the time course and the strength of correlations between different time points of macroscopic currents and utilizes the property of semiseparability of covariance matrix for computationally efficient estimation of current likelihood and its gradient. The number of calculation steps scales linearly with the number of channel states as opposed to the cubic dependence in a previously described method.

View Article and Find Full Text PDF

Hippocalcin is a Ca(2+)-binding protein, which belongs to the family of neuronal Ca(2+) sensors. It is highly expressed in the hippocampus but molecular mechanisms underlying its action in this part of the brain have not been investigated in detail. To study whether intrinsic neuronal activity could result in hippocalcin-mediated signal transduction we examined spontaneous and action potential (AP)-dependent changes in fluorescence of yellow fluorescent protein-tagged hippocalcin (HPCA-YFP) in transiently transfected hippocampal cultured neurons.

View Article and Find Full Text PDF