There are several mechanisms that affect a gas when using discharge plasma to initiate combustion or to stabilize a flame. There are two thermal mechanisms-the homogeneous and inhomogeneous heating of the gas due to 'hot' atom thermalization and vibrational and electronic energy relaxation. The homogeneous heating causes the acceleration of the chemical reactions.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
August 2015
This paper discusses the processes leading to the formation of 'hot' atoms and radicals possessing excessive translational energy in high-voltage NS pulse discharges. It is shown that the formation of such 'hot' atoms occurs efficiently both in the dissociation of molecules by direct electron impact, and in the collisional quenching of electronically excited states. Depending on the magnitude of the reduced electric field in the discharge, reactions of these 'hot' atoms increase the initial concentration of radicals in the discharge afterglow two to three times when compared with the values calculated without effects of translational non-equilibrium.
View Article and Find Full Text PDFHere we present the results of an experimental study of the effect of ions produced in a dc corona discharge on inactivation of bacteria on the surface of agarose gel. Both positive and negative corona discharges in various gases at different humidities were studied. The measurements in air, O(2), N(2), Ar and He mixtures show that there is no inactivation in pure N(2), pure O(2) and an N(2)-H(2)O mixture.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
February 2012
Non-equilibrium plasma demonstrates great potential to control ultra-lean, ultra-fast, low-temperature flames and to become an extremely promising technology for a wide range of applications, including aviation gas turbine engines, piston engines, RAMjets, SCRAMjets and detonation initiation for pulsed detonation engines. The analysis of discharge processes shows that the discharge energy can be deposited into the desired internal degrees of freedom of molecules when varying the reduced electric field, E/n, at which the discharge is maintained. The amount of deposited energy is controlled by other discharge and gas parameters, including electric pulse duration, discharge current, gas number density, gas temperature, etc.
View Article and Find Full Text PDFThe effect of underwater pulsed spark discharge on the precipitation of dissolved calcium ions was investigated in the present study. Water samples with different calcium hardness were prepared by continuous evaporation of tap water using a laboratory cooling tower. It was shown that the concentration of calcium ions dropped by 20-26% after 10-min plasma treatment, comparing with no drop for untreated cases.
View Article and Find Full Text PDF