Publications by authors named "Andrey Semechkin"

International Stem Cell Corporation human parthenogenetic neural stem cells (ISC-hpNSC) have potential therapeutic value for patients suffering from traumatic brain injury (TBI). Here, we demonstrate the behavioral and histological effects of transplanting ISC-hpNSC intracerebrally in an animal model of TBI. : Sprague-Dawley rats underwent a moderate controlled cortical impact TBI surgery.

View Article and Find Full Text PDF

We have previously shown that human parthenogenetic stem cells (hpSC) can be chemically directed to differentiate into a homogeneous population of multipotent neural stem cells (hpNSC) that are scalable, cryopreservable, express all the appropriate neural markers, and can be further differentiated into functional dopaminergic neurons. Differentiation of hpSC into hpNSC provides a platform to study the molecular basis of human neural differentiation, to develop cell culture models of neural disease, and to provide neural stem cells for the treatment of neurodegenerative diseases. Additionally, the hpNSC that are generated could serve as a platform for drug discovery and the determination of pharmaceutical-induced neural toxicity.

View Article and Find Full Text PDF

In this commentary we discuss International Stem Cell Corporation's (ISCO's) approach to developing a pluripotent stem cell based treatment for Parkinson's disease (PD). In 2016, ISCO received approval to conduct the world's first clinical study of a pluripotent stem cell based therapy for PD. The Australian regulatory agency Therapeutic Goods Administration (TGA) and the Melbourne Health's Human Research Ethics Committee (HREC) independently reviewed ISCO's extensive preclinical data and granted approval for the evaluation of a novel human parthenogenetic derived neural stem cell (NSC) line, ISC-hpNSC, in a PD phase 1 clinical trial ( ClinicalTrials.

View Article and Find Full Text PDF

Repair or regeneration of hyaline cartilage in knees, shoulders, intervertebral discs, and other assorted joints is a major therapeutic target. To date, therapeutic strategies utilizing chondrocytes or mesenchymal stem cells are limited by expandability or the generation of mechanically inferior cartilage. Our objective is to generate robust cartilage-specific matrix from human mesenchymal stem cells suitable for further therapeutic development.

View Article and Find Full Text PDF

Human pluripotent stem cells (PSC) have the potential to revolutionize regenerative medicine. However undifferentiated PSC can form tumors and strict quality control measures and safety studies must be conducted before clinical translation. Here we describe preclinical tumorigenicity and biodistribution safety studies that were required by the US Food and Drug Administration (FDA) and Australian Therapeutic Goods Administration (TGA) prior to conducting a Phase I clinical trial evaluating the safety and tolerability of human parthenogenetic stem cell derived neural stem cells ISC-hpNSC for treating Parkinson's disease (ClinicalTrials.

View Article and Find Full Text PDF

Cell therapy has attracted considerable interest as a promising therapeutic alternative for patients with Parkinson's disease (PD). Clinical studies have shown that grafted fetal neural tissue can achieve considerable biochemical and clinical improvements in PD. However, the source of fetal tissue grafts is limited and ethically controversial.

View Article and Find Full Text PDF

Human parthenogenetic stem cells are derived from the inner cell mass of blastocysts obtained from unfertilized oocytes that have been stimulated to develop without any participation of male gamete. As parthenogenesis does not involve the destruction of a viable human embryo, the derivation and use of human parthenogenetic stem cells does not raise the same ethical concerns as conventional embryonic stem cells. Human parthenogenetic stem cells are similar to embryonic stem cells in their proliferation and multilineage in vitro differentiation capacity.

View Article and Find Full Text PDF

Pluripotent stem cells (PSCs) derived from parthenogenetically activated human oocytes demonstrate the typical characteristics displayed by human embryonic stem cells (hESCs) including infinite division and in vitro and in vivo differentiation into cells of all germ lineages. Different activation techniques allow the creation of either human leukocyte antigen (HLA) heterozygous human parthenogenetic stem cell (hpSC) lines, which are HLA-matched/histocompatible with the oocyte donor, or HLA-homozygous hpSC lines, which may be histocompatible to significant segments of the human population. This immune-matching advantage, combined with the advantage of derivation from nonviable human embryos that originate from unfertilized parthenogenetically activated oocytes, makes hpSCs a promising source of PSCs for cell-based transplantation therapy.

View Article and Find Full Text PDF

Human parthenogenetic stem cells (hpSCs) are pluripotent stem cells with enormous potential as cell sources for cell-based therapies: hpSCs may have histocompatibilty advantages over human embryonic stem cells (hESCs) and derivation of hpSCs does not require viable blastocyst destruction. For translation of all pluripotent stem cell-based therapies, derivation of differentiated cell products that are not contaminated with undifferentiated cells is a major technical roadblock. We report here a novel method to derive high-purity definitive endoderm (DE) from hpSCs, based on reproducing features of the normal human embryonic microenvironment.

View Article and Find Full Text PDF

Human parthenogenetic stem cells (hpSC) hold great promise as a source of pluripotent stem cells for cell-based transplantation therapy due to their ethical method of derivation as well as the enhanced capacity for immunomatching with significant segments of the human population. We report here the directed differentiation of hpSC to produce enriched populations of definitive endoderm. Moreover, we find that treatment of undifferentiated hpSC by trichostatin A (TSA) before applying the directed differentiation protocol significantly increases the proportion of definitive endoderm cells in the final population.

View Article and Find Full Text PDF