Publications by authors named "Andrey Pototsky"

Frequency combs (FCs)-spectra containing equidistant coherent peaks-have enabled researchers and engineers to measure the frequencies of complex signals with high precision, thereby revolutionising the areas of sensing, metrology and communications and also benefiting the fundamental science. Although mostly optical FCs have found widespread applications thus far, in general FCs can be generated using waves other than light. Here, we review and summarise recent achievements in the emergent field of acoustic frequency combs (AFCs), including phononic FCs and relevant acousto-optical, Brillouin light scattering and Faraday wave-based techniques that have enabled the development of phonon lasers, quantum computers and advanced vibration sensors.

View Article and Find Full Text PDF

In the framework of physical reservoir computing (RC), machine learning algorithms designed for digital computers are executed using analog computerlike nonlinear physical systems that can provide energy-efficient computational power for predicting time-dependent quantities that can be found using nonlinear differential equations. We suggest a bubble-based RC (BRC) system that combines the nonlinearity of an acoustic response of a cluster of oscillating gas bubbles in water with a standard echo state network (ESN) algorithm that is well suited to forecast chaotic time series. We confirm the plausibility of the BRC system by numerically demonstrating its ability to forecast certain chaotic time series similarly to or even more accurately than ESN.

View Article and Find Full Text PDF

Biological cells and many living organisms are mostly made of liquids and therefore, by analogy with liquid drops, they should exhibit a range of fundamental nonlinear phenomena such as the onset of standing surface waves. Here, we test four common species of earthworm to demonstrate that vertical vibration of living worms lying horizontally on a flat solid surface results in the onset of subharmonic Faraday-like body waves, which is possible because earthworms have a hydrostatic skeleton with a flexible skin and a liquid-filled body cavity. Our findings are supported by theoretical analysis based on a model of parametrically excited vibrations in liquid-filled elastic cylinders using material parameters of the worm's body reported in the literature.

View Article and Find Full Text PDF

Liquid drops and vibrations are ubiquitous in both everyday life and technology, and their combination can often result in fascinating physical phenomena opening up intriguing opportunities for practical applications in biology, medicine, chemistry, and photonics. Here we study, theoretically and experimentally, the response of pancake-shaped liquid drops supported by a solid plate that vertically vibrates at a single, low acoustic range frequency. When the vibration amplitudes are small, the primary response of the drop is harmonic at the frequency of the vibration.

View Article and Find Full Text PDF

Marangoni flow created by the gradient of surface tension can be used to transport small objects along fluid interfaces. We study lateral motion of a fully wetted self-propelled body (swimmer) at a fluid-fluid interface. The swimmer releases a surfactant at a constant rate inducing a surface tension gradient.

View Article and Find Full Text PDF

We consider a colony of point-like self-propelled surfactant particles (swimmers) without direct interactions that cover a thin liquid layer on a solid support. The particles predominantly swim normal to the free film surface with only a small component parallel to the film surface. The coupled dynamics of the swimmer density and film height profile is captured in a long-wave model allowing for diffusive and convective transport of the swimmers (including rotational diffusion).

View Article and Find Full Text PDF

We consider a carpet of self-propelled particles at the liquid-gas interface of a liquid film on a solid substrate. The particles exert an excess pressure on the interface and also move along the interface while the swimming direction changes due to rotational diffusion. We study the intricate influence of these self-propelled insoluble surfactants on the stability of the film surface and show that depending on the strength of in-surface rotational diffusion and the absolute value of the in-surface swimming velocity, several characteristic instability modes can occur.

View Article and Find Full Text PDF

There are two modes by which clusters of aggregating particles can coalesce: The clusters can merge either (i) by the Ostwald ripening process, in which particles diffuse from one cluster to the other while the cluster centers remain stationary, or (ii) by means of a cluster translation mode, in which the clusters move toward each other and join. To understand in detail the interplay between these different modes, we study a model system of hard particles with an additional attraction between them. The particles diffuse along narrow channels with smooth or periodically corrugated walls, so that the system may be treated as one-dimensional.

View Article and Find Full Text PDF

We consider the unidirectional particle transport in a suspension of colloidal particles which interact with each other via a pair potential having a hard-core repulsion plus an attractive tail. The colloids are confined within a long narrow channel and are driven along by a dc or an ac external potential. In addition, the walls of the channel interact with the particles via a ratchetlike periodic potential.

View Article and Find Full Text PDF

We consider an elastic neutral dimer formed by two bound equal masses carrying opposite charges and moving along an electrically active filament in one dimension. An ac electrical field drives the two dimer heads, when set free or bound together to form a rigid rod, to opposite directions, thus yielding a zero net dimer current for zero and infinite elastic constants. Under the same driving conditions, an elastically deformable dimer can get rectified and the ensuing net current maximized for an optimal value of dimer elastic constant.

View Article and Find Full Text PDF

We consider a network of deterministic and stochastic locally coupled oscillators with positive or negative dissipation and local time-delayed feedback. (i) For a deterministic system, we study propagation of waves through the network. We show that time delay leads to a coexistence of several neutral modes with different wave numbers and group velocities, which we compute analytically.

View Article and Find Full Text PDF

We present an approach for the analytical treatment of excitable systems with noise-induced dynamics in the presence of time delay. An excitable system is modeled as a bistable system with a time delay, while another delay enters as a control term taken after Pyragas [K. Pyragas, Phys.

View Article and Find Full Text PDF

Here we address the effect of large delay on the statistical characteristics of noise-induced oscillations in a nonlinear system below Andronov-Hopf bifurcation. In particular, we introduce a theory of these oscillations that does not involve the eigenmode expansion, and can therefore be used for arbitrary delay time. In particular, we show that the correlation matrix (CM) oscillates on two different time scales: on the scale of the main period of noise-induced oscillations, and on the scale close to the delay time.

View Article and Find Full Text PDF

We consider a thin film consisting of two layers of immiscible liquids on a solid horizontal (heated) substrate. Both the free liquid-liquid and the liquid-gas interface of such a bilayer liquid film may be unstable due to effective molecular interactions relevant for ultrathin layers below 100-nm thickness, or due to temperature-gradient-caused Marangoni flows in the heated case. Using a long-wave approximation, we derive coupled evolution equations for the interface profiles for the general nonisothermal situation allowing for slip at the substrate.

View Article and Find Full Text PDF

We consider two stacked ultrathin layers of different liquids on a solid substrate. Using long-wave theory, we derive coupled evolution equations for the free liquid-liquid and liquid-gas interfaces. Depending on the long-range van der Waals forces and the ratio of the layer thicknesses, the system follows different pathways of dewetting.

View Article and Find Full Text PDF