The disappearance of sp structural defects during abundant fullerene isomer formation is considered within the framework of the atomistic mechanism with participation of carbon atoms with sp hybridization. The study is carried out using the example of the icosahedral C- fullerene formation from the appropriate C- fullerene with a 7-ring. In this case the studied atomistic mechanism includes the following stages: (1) insertion of single carbon atoms into the fullerene from carbon vapor as an sp-atom instead of or above a bond, (2) directional migration of the sp-atom positions towards the 7-ring with decrease of energy, and (3) meeting of two sp atoms near the 7-ring with annihilation of the sp-atom pair and formation of the sp structure of the C- fullerene.
View Article and Find Full Text PDFThis study presents a novel approach for mapping global chromatin interactions using S1 nuclease, a sequence-agnostic enzyme. We develop and outline a protocol that leverages S1 nuclease's ability to effectively introduce breaks into both open and closed chromatin regions, allowing for comprehensive profiling of chromatin properties. Our S1 Hi-C method enables the preparation of high-quality Hi-C libraries, marking a significant advancement over previously established DNase I Hi-C protocols.
View Article and Find Full Text PDFFormation of carbon propeller-like molecules (CPLMs) from starphenes on a graphene substrate under electron irradiation with about 100% yield is observed in molecular dynamics simulations using the REBO-1990EVC_CH potential and CompuTEM algorithm. A CPLM consists of three carbon atomic chains connected to the central hexagon and is formed as a result of the spontaneous breaking of bonds between zigzag atomic rows in starphene arms after hydrogen removal by electron impacts. In the absence of the substrate, the CPLM yield is slightly decreased due to sticking between forming chains, while the formation time is increased threefold.
View Article and Find Full Text PDFOverweight and obesity is a multifactorial, multisystem disease declared a global epidemic by the World Health Organization (WHO) as early as in 1997. At least 30% of the working-age population in Russia is overweight. Only the use of physical activity as an integral (basic) part of obesity treatment and maintenance of the body weight achieved in the course of treatment can achieve durable and long-lasting treatment results as well as significant changes in the body structure (fat/non-fat body weight ratio).
View Article and Find Full Text PDFThe method of precise cutting of 2D materials by simultaneous action of a catalyst at the tip of the scanning microscope probe and an electron beam in a high-resolution transmission electron microscope is proposed and studied using atomistic simulations by the example of graphene and a nickel catalyst. Reactive molecular dynamics simulations within the Compu-TEM approach for the description of electron impact effects show that the combination of the nickel catalyst and electron irradiation is crucial for graphene cutting. Cuts with straight edges with widths of about 1-1.
View Article and Find Full Text PDFStructural maintenance of chromosomes (SMC) complexes are essential proteins found in genomes of all cellular organisms. Essential functions of these proteins, such as mitotic chromosome formation and sister chromatid cohesion, were discovered a long time ago. Recent advances in chromatin biology showed that SMC proteins are involved in many other genomic processes, acting as active motors extruding DNA, which leads to the formation of chromatin loops.
View Article and Find Full Text PDFcalculations are performed to study consecutive reconstruction of a zigzag graphene edge. According to the obtained energy profile along the reaction pathway, the first reconstruction step, formation of the first pentagon-heptagon pair, is the slowest one, while the growth of an already nucleated reconstructed edge domain should occur steadily at a much higher rate. Domains merge into one only in 1/4 of cases when they get in contact, while in the rest of the cases, residual defects are left.
View Article and Find Full Text PDFMolecular dynamics simulations show that a graphene nanoribbon with alternating regions which are one and three hexagons wide can transform into a hybrid 1D nanoobject with alternating double chains and polycyclic regions under electron irradiation in HRTEM. A scheme of synthesis of such a nanoribbon using Ullmann coupling and dehydrogenation reactions is proposed. The reactive REBO-1990EVC potential is adapted for simulations of carbon-hydrogen systems and is used in combination with the CompuTEM algorithm for modeling of electron irradiation effects.
View Article and Find Full Text PDFNanodiamonds produced by the detonation method are used as lubricants, polishing compositions, polymer composites, etc. To reveal how nanodiamonds differ in terms of surface properties and interact with natural organic matter, we used tritium-labelled humic substances to quantitively describe their adsorption onto the nanodiamond surface. It was shown that the adsorption of humic substances onto nanodiamonds resulted in fractionation of humic substances that was strongly dependent on the zeta potential of nanodiamonds in water but did not significantly affect the uptake of nanodiamonds by wheat seedlings.
View Article and Find Full Text PDFThe diet of Indigenous Peoples of North-Western Siberia is characterized by a significant proportion of traditional foods. Eating local products provides a ready-made set of macro- and microelements necessary for life in the challenging conditions of the Arctic. Currently, high consumption of traditional foods is typical in the season of fishing or reindeer slaughter, while out of season the consumption of easily digestible carbohydrates increases.
View Article and Find Full Text PDFThe analytical two-chain Frenkel-Kontorova model is used to describe domain wall networks in bilayer graphene upon biaxial stretching of one of the layers. We show that the commensurate-incommensurate phase transition leading to formation of a regular triangular domain wall network at the relative biaxial elongation of 3.0×10^{-3} is followed by the transition to another incommensurate phase with a striped network at the elongation of 3.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
August 2020
This research aims to improve anaesthesia services given to preterm infants by the use of dexamethasone and aminophylline administrated under sevoflurane, and to analyze its effect on the cell-mediated immunity (CD4+CD25+Foxp3+(T-reg) and CD4+CD25highFoxp3+CD127low). We have examined 74 premature babies with retinopathy of prematurity (ROP) at the 3-5 stages during the 25-32 week gestation period (1-6 months after birth). Both immunomodulators had no significant effect on clinical parameters after one dose (P > .
View Article and Find Full Text PDFThe novel approach based on S isotope tracing is proposed for the elucidation of hydrodesulfurization (HDS) mechanisms and characterization of molybdenum sulfide catalysts. The technique involves sulfidation of the catalyst with S-isotope-labeled dihydrogen sulfide, followed by monitoring the fate of the S isotope in the course of the hydrodesulfurization reaction by online mass spectrometry and characterization of the catalyst after the reaction by temperature-programmed oxidation with mass spectrometry (TPO-MS). The results point to different pathways of thiophene transformation over Co or Ni-promoted and unpromoted molybdenum sulfide catalysts, provide information on the role of promoter and give a key for the design of new efficient HDS catalysts.
View Article and Find Full Text PDFDespite the high potential of endohedral metallofullerenes (EMFs) for application in biology, medicine and molecular electronics, and recent efforts in EMF synthesis, the variety of EMFs accessible by conventional synthetic methods remains limited and does not include, for example, EMFs of late transition metals. We propose a method in which EMF formation is initiated by electron irradiation in aberration-corrected high-resolution transmission electron spectroscopy (AC-HRTEM) of a metal cluster surrounded by amorphous carbon inside a carbon nanotube serving as a nanoreactor and apply this method for synthesis of nickel EMFs. The use of AC-HRTEM makes it possible not only to synthesize new, previously unattainable nanoobjects but also to study in situ the mechanism of structural transformations.
View Article and Find Full Text PDFBackground: International studies of the health of Indigenous and tribal peoples provide important public health insights. Reliable data are required for the development of policy and health services. Previous studies document poorer outcomes for Indigenous peoples compared with benchmark populations, but have been restricted in their coverage of countries or the range of health indicators.
View Article and Find Full Text PDFThe presence of defects in graphene has an essential influence on its physical and chemical properties. The formation, behaviour and healing of defects are determined by energetic characteristics of atomic scale structure changes. In this article, we review recent studies devoted to atomic scale reactions during thermally activated and irradiation-induced processes in graphene.
View Article and Find Full Text PDFThe cutting of single-walled carbon nanotubes by an 80 keV electron beam catalyzed by nickel clusters is imaged in situ using aberration-corrected high-resolution transmission electron microscopy. Extensive molecular dynamics simulations within the CompuTEM approach provide insight into the mechanism of this process and demonstrate that the combination of irradiation and the nickel catalyst is crucial for the cutting process to take place. The atomistic mechanism of cutting is revealed by a detailed analysis of irradiation-induced reactions of bond reorganization and atom ejection in the vicinity of the nickel cluster, showing a highly complex interplay of different chemical transformations catalysed by the metal cluster.
View Article and Find Full Text PDFThe most sensitive lines of carbon, used nowadays for its determination in steels by laser-induced-breakdown spectroscopy (LIBS), are at vacuum UV and, thereby, LIBS potential is significantly reduced. We suggested the use of the C I 833.51 nm line for carbon determination in low-alloy steels (c(C)~0.
View Article and Find Full Text PDFStructural, energetic, and tribological characteristics of double-layer graphene with commensurate and incommensurate krypton spacers of nearly monolayer coverage are studied within the van der Waals-corrected density functional theory. It is shown that when the spacer is in the commensurate phase, the graphene layers have the AA stacking. For this phase, the barriers to relative in-plane translational and rotational motion and the shear mode frequency of the graphene layers are calculated.
View Article and Find Full Text PDFThe fluorination of phenolphthalein and naphtholphthalein was performed with diluted fluorine gas under acidic conditions. For both compounds we observed an electrophilic fluorination into ortho position to the hydroxyl group. Through the use of this reaction we synthesized and characterized mono-and difluorinated derivatives of phenolphthalein and naphtholphthalein.
View Article and Find Full Text PDFThe recent progress in high-resolution transmission electron microscopy (HRTEM) has given rise to the possibility of in situ observations of nanostructure transformations and chemical reactions induced by electron irradiation. In this article we briefly summarise experimental observations and discuss in detail atomistic modelling of irradiation-induced processes in HRTEM, as well as mechanisms of such processes recognised due to modelling. Accurate molecular dynamics (MD) techniques based on first principles or tight-binding models are employed in the analysis of single irradiation-induced events, and classical MD simulations are combined with a kinetic Monte Carlo algorithm to simulate continuous irradiation of nanomaterials.
View Article and Find Full Text PDFWe have applied an algorithm to automatically identify emission lines in laser-induced breakdown spectrometry (LIBS). A Q-switched Nd:YAG laser at 355 nm was used to ablate a high-alloy stainless steel sample. The algorithm was implemented by three parts: simulation of the set of spectra corresponding to different temperature (T) and electron density (N(e)), searching the best correlated pair of a model spectrum and an experimental one, and attributing the peaks with certain lines.
View Article and Find Full Text PDFInterwall interaction energies of double-walled nanotubes with long inner and short outer walls are calculated as functions of coordinates describing relative rotation and displacement of the walls using van der Waals corrected density functional theory. The magnitude of corrugation and the shape of the potential energy relief are found to be very sensitive to changes of the shorter wall length at subnanometer scale and atomic structure of the edges if at least one of the walls is chiral. Threshold forces required to start relative motion of the short walls and temperatures at which the transition between diffusive and free motion of the short walls takes place are estimated.
View Article and Find Full Text PDFThe dispersion-corrected density functional theory (DFT-D) is applied for investigation of structure and electronic properties of a sulfur-terminated graphene nanoribbon (S-GNR) encapsulated in a carbon nanotube. Two mechanisms of accommodation of the GNR in the carbon nanotube, distortion of the nanotube cross-section into an elliptic shape accompanied by bending of the GNR and transformation of the GNR to a helical conformation, are analyzed. Three types of elastic distortions of the nanotube and encapsulated GNR are revealed depending on the ratio of the diameter of the nanotube cavity to the GNR width.
View Article and Find Full Text PDFOutput properties of neurons are greatly shaped by voltage-gated ion channels, whose biophysical properties and localization within axodendritic compartments serve to significantly transform the original input. The hyperpolarization-activated current, I(h), is mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and plays a fundamental role in influencing neuronal excitability by regulating both membrane potential and input resistance. In neurons such as cortical and hippocampal pyramidal neurons, the subcellular localization of HCN channels plays a critical functional role, yet mechanisms controlling HCN channel trafficking are not fully understood.
View Article and Find Full Text PDF