The superconducting properties of 85 nm thick hafnium thin films with a 5 nm thick titanium layer on top have been investigated for three different geometries, that is, a film covering the entire 7 × 7 mm chip surface, bridges with a width of 200 μm and length up to 1800 μm, and bridges in the form of squares with sides from 100 to 1000 μm. The bridges were formed by a photolithographic lift-off process and are intended to be used as the main sensing element of a microcalorimeter based on a transition-edge sensor (TES) in experiments to determine the magnetic moment of neutrinos. Based on the measurements of the critical current, the critical temperature, and the width of the superconducting transition, we estimate the energy resolution δ of the TES prototypes, showing that it is possible to fabricate microcalorimeters with δ less than 1 eV using these films.
View Article and Find Full Text PDFBackground: The integration of artificial intelligence (AI) into medicine is growing, with some experts predicting its standalone use soon. However, skepticism remains due to limited positive outcomes from independent validations. This research evaluates AI software's effectiveness in analyzing chest X-rays (CXR) to identify lung nodules, a possible lung cancer indicator.
View Article and Find Full Text PDFChemotherapy is among the main classical approaches to the treatment of oncologic diseases. Its efficiency has been comprehensively proven by clinical examinations; however, the low selectivity of chemotherapeutic agents limits the possibilities of this method, making it necessary to search for new approaches to the therapy of oncologic diseases. Photodynamic therapy is the least invasive method and a very efficient alternative for the treatment of malignant tumors; however, its efficiency depends on the depth of light penetration into the tissue and on the degree of oxygenation of the treatment zone.
View Article and Find Full Text PDFNanophotothermolysis (NPhT) effect is considered to be an approach for the development of highly selective modalities for anticancer treatment. Herein, we evaluated an antitumor efficacy of NPhT with intravenously injected zinc phthalocyanine particles (ZnPcPs) in murine subcutaneous syngeneic tumor models. In S37 sarcoma-bearing mice a biodistribution of ZnPcPs was studied and the high antitumor efficacy of ZnPcPs-mediated NPhT was shown, including a response of metastatic lesions.
View Article and Find Full Text PDFInt J Mol Sci
May 2024
In the original publication [...
View Article and Find Full Text PDFThe combination of radiation treatment and chemotherapy is currently the standard for management of cancer patients. However, safe doses do not often provide effective therapy, then pre-treated patients are forced to repeat treatment with often already increased tumor resistance to drugs and irradiation. One of the solutions we suggest is to improve primary course of radiation treatment via enhancing radiosensitivity of tumors by magnetic-guided iron oxide nanoparticles (magnetite).
View Article and Find Full Text PDFWe consider properties of dichroic antenna arrays on a silicon substrate with integrated cold-electron bolometers to detect radiation at frequencies of 210 and 240 GHz. This frequency range is widely used in cosmic microwave background experiments in space, balloon, and ground-based missions such as BICEP Array, LSPE, LiteBIRD, QUBIC, Simons Observatory, and AliCPT. As a direct radiation detector, we use cold-electron bolometers, which have high sensitivity and a wide operating frequency range, as well as immunity to spurious cosmic rays.
View Article and Find Full Text PDFHafnium is a superconductor with a transition temperature slightly above 100 mK. This makes it attractive for such applications as microcalorimeters with high energy resolution. We report the superconducting properties of Hf films of thicknesses ranging from 60 to 115 nm, deposited on Si and AlO substrates by electron beam evaporation.
View Article and Find Full Text PDFThis research presents a novel synthetic photosensitizer for the photodynamic therapy (PDT) of malignant tumors: meso-tetra(3-pyridyl) bacteriochlorin, which absorbs at 747 nm (in the long-wavelength region of the spectrum) and is stable when stored in the dark. HPyBC demonstrates pronounced photoinduced activity in vitro against tumor cells of various geneses (IC varies from 21 to 68 nM for HEp2, EJ, S37, CT26, and LLC cultured cells) and in vivo provides pronounced antitumor efficacy in the treatment of mice bearing small or large S37, Colo26, or LLC metastatic tumors, as well as in the treatment of rats bearing RS-1 liver cholangioma. As a result, total regression of primary tumor nodules and cure of 40 to 100% of the animals was proven by the experiment criteria, MRI, and histological analysis.
View Article and Find Full Text PDFDestroying tumor vasculature is a relevant therapeutic strategy due to its involvement in tumor progression. However, adaptive resistance to approved antiangiogenic drugs targeting VEGF/VEGFR pathway requires the recruitment of additional targets. In this aspect, targeting TRAIL pathway is promising as it is an important component of the immune system involved in tumor immunosurveillance.
View Article and Find Full Text PDFInt J Mol Sci
July 2023
Prostate cancer is the second most common cancer among men. We designed and synthesized new ligands targeting prostate-specific membrane antigen and suitable for bimodal conjugates with diagnostic and therapeutic agents. studies of the affinity of the synthesized compounds to the protein target have been carried out.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is currently regarded as a promising method for the treatment of oncological diseases. However, it involves a number of limitations related to the specific features of the method and the specific characteristics of photosensitizer molecules, including tumor hypoxia, small depth of light penetration into the tumor tissue, and low accumulation sensitivity. These drawbacks can be overcome by combining PDT with other treatment methods, for example, chemotherapy.
View Article and Find Full Text PDFHerein, we report a new conjugate BChl-S-S-NI based on the second-generation photosensitizer bacteriochlorin (BChl) and a 4-styrylnaphthalimide fluorophore (NI), which is cleaved into individual functional fragments in the intracellular medium. The chromophores in the conjugate were cross-linked by click chemistry via a bis(azidoethyl)disulfide bridge which is reductively cleaved by the intracellular enzyme glutathione (GSH). A photophysical investigation of the conjugate in solution by using optical spectroscopy revealed that the energy transfer process is realized with high efficiency in the conjugated system, leading to the quenching of the emission of the fluorophore fragment.
View Article and Find Full Text PDFAs novel SARS-CoV-2 Variants of Concern emerge, the efficacy of existing vaccines against COVID-19 is declining. A possible solution to this problem lies in the development of a live attenuated vaccine potentially able of providing cross-protective activity against a wide range of SARS-CoV-2 antigenic variants. Cold-adapted (ca) SARS-CoV-2 variants, Dubrovka-ca-B4 (D-B4) and Dubrovka-ca-D2 (D-D2), were obtained after long-term passaging of the Dubrovka (D) strain in Vero cells at reduced temperatures.
View Article and Find Full Text PDFTRAIL (TNF-related apoptosis-inducing ligand) and its derivatives are potentials for anticancer therapy due to the selective induction of apoptosis in tumor cells upon binding to death receptors DR4 or DR5. Previously, we generated a DR5-selective TRAIL mutant variant DR5-B overcoming receptor-dependent resistance of tumor cells to TRAIL. In the current study, we improved the antitumor activity of DR5-B by fusion with a tumor-homing iRGD peptide, which is known to enhance the drug penetration into tumor tissues.
View Article and Find Full Text PDFBeilstein J Nanotechnol
September 2022
Electron on-chip cooling from the base temperature of 300 mK is very important for highly sensitive detectors operating in space due to problems of dilution fridges at low gravity. Electron cooling is also important for ground-based telescopes equipped with He cryostats being able to function at any operating angle. This work is aimed at the investigation of electron cooling in the low-temperature range.
View Article and Find Full Text PDFHere we present the results of a numerical modeling of mode composition in the constriction of the Large Scale Polarization Explorer-Short-Wavelength Instrument for the Polarization Explorer (LSPE-SWIPE) back-to-back horn. These results are used for calculating the frequency response of arrays of planar dipole antennas with cold-electron bolometers for 145, 210, and 240 GHz frequencies. For the main frequency channel (i.
View Article and Find Full Text PDFBeilstein J Nanotechnol
July 2022
Here, we experimentally test the applicability of an aluminium Josephson junction of a few micrometers size as a single photon counter in the microwave frequency range. We have measured the switching from the superconducting to the resistive state through the absorption of 10 GHz photons. The dependence of the switching probability on the signal power suggests that the switching is initiated by the simultaneous absorption of three and more photons, with a dark count time above 0.
View Article and Find Full Text PDFBeilstein J Nanotechnol
November 2021
The amplitudes of the first Shapiro steps for an external signal with frequencies of 72 and 265 GHz are measured as function of the temperature from 20 to 80 K for a 6 μm Josephson grain boundary junction fabricated by YBaCuO film deposition on an yttria-stabilized zirconia bicrystal substrate. Non-monotonic dependences of step heights for different external signal frequencies were found in the limit of a weak driving signal, with the maxima occurring at different points as function of the temperature. The step heights are in agreement with the calculations based on the resistively-capacitively shunted junction model and Bessel theory.
View Article and Find Full Text PDFPhoto-induced cytotoxicity and antitumor activity of a series of dual function agents for photodynamic therapy (PDT) and fluorescent imaging based on bacteriochlorin photosensitizer conjugated with various naphthalimide fluorophores was studied in vitro using murine tumor cells of S37 sarcoma and in vivo on mice bearing murine S37 sarcoma. Upon irradiation at the absorption maximum of the photosensitizer, the activity of conjugates was as high as in the case of individual bacteriochlorin, while an additional excitation of the naphthalimide fragment led to an increase in the PDT efficacy due to resonance energy transfer from the fluorophore to photosensitizer. The fluorescence contrast and specific cytotoxic activity measurements indicate that the conjugate of bacteriochlorin with 3,4-dimethoxestyrene-substituted naphthalimide is the most promising agent for the application as theranostic in PDT.
View Article and Find Full Text PDFBiomed Pharmacother
February 2021
A promising direction in Biopharmaceuticals is the development of specific peptide-based systems to improve drug delivery. This approach may increase tumor specificity and drug penetration into the target cell. Similar systems have been designed for several antitumor drugs.
View Article and Find Full Text PDFAn aluminium Josephson junction (JJ), with a critical current suppressed by a factor of three compared with the maximal value calculated from the gap, is experimentally investigated for application as a threshold detector for microwave photons. We present the preliminary results of measurements of the lifetime of the superconducting state and the probability of switching by a 9 GHz external signal. We found an anomalously large lifetime, not described by the Kramers' theory for the escape time over a barrier under the influence of fluctuations.
View Article and Find Full Text PDFDespite the weak clinical efficacy of TRAIL death receptor agonists, a search is under way for new agents that more efficiently activate apoptotic signaling. We previously created a TRAIL DR5-selective variant DR5-B without affinity for the DR4, DcR1, DcR2, and OPG receptors and increased proapoptotic activity in tumor cells. Here we showed that DR5-B significantly inhibited tumor growth in HCT116 and Caco-2 but not in HT-29 xenografts.
View Article and Find Full Text PDFThis study describes the identification and a broad-based characterization of the pregnancy-associated glycoprotein (PAG) genes expressed in the synepitheliochorial placenta of the Alces alces (Aa; N = 51). We used: (1) both size measurements (cm) of various Aa embryos/fetuses (crown-rump length) and placentomes (PLCs); (2) PCR, Southern and sequencing; (3) Western-blot for total placental glycoproteins; (4) deglycosylation of total cotyledonary proteins; and (5) double heterologous IHC for cellular immune-localization of the PAGs as pregnancy advanced (50-200 days post coitum). The crown-rump length and PLC size measurements permitted a novel pattern estimation of various pregnancy stages in wild Aa.
View Article and Find Full Text PDFThe fluctuational propagation of solitons (magnetic fluxons) in long Josephson junctions is studied both numerically and analytically. It is demonstrated that operation in conditions where solitons are subjected to Lorentz contraction for a significant part of the junctions length leads to drastic suppression of thermal jitter at the output junction end. Specifically, for large-to-critical damping and small values of bias current, the physically obvious dependence of the jitter versus length σ~√L is confirmed, while for small damping starting from the experimentally relevant α=0.
View Article and Find Full Text PDF