We have performed comparative numerical calculations using a multiple trapping (MT) formalism with an exponential and an aggregate two-exponential trap distributions for describing two mostly used experimental setups for studying the radiation-induced conductivity (RIC) and the time-of-flight (TOF) effects. Computations have been done for pulsed and long-time electron-beam irradiations in a small-signal regime. Predictions of these two approaches differ appreciably in both setups.
View Article and Find Full Text PDFUsing published data for four molecularly doped polymers, which exhibit flat plateaus on the time-of-flight transients, we compared theoretical curves with experimental ones. The numerical calculations as well as parameter values were based on the Gaussian disorder model. In no case were flat plateaus predicted to appear.
View Article and Find Full Text PDFWe report results of specially planned experiments intended to verify the dispersive character of the charge carrier transport in polycarbonate molecularly doped with hydrazone at 30 wt% loading, using for this purpose samples specifically featuring a well-defined plateau on a linear-linear plot. For this purpose we propose a new variant of the time-of-flight technique which allows easy changing of the generation zone width from about 0.5 µm (surface excitation) through intermediate values to full sample thickness (bulk excitation).
View Article and Find Full Text PDF