ACS Appl Mater Interfaces
July 2023
Thermo-osmosis refers to fluid migration due to the temperature gradient. The mechanistic understanding of thermo-osmosis in charged nano-porous media is still incomplete, while it is important for several environmental and energy applications, such as low-grade waste heat recovery, wastewater recovery, fuel cells, and nuclear waste storage. This paper presents results from a series of molecular dynamics simulations of thermo-osmosis in charged silica nanochannels that advance the understanding of the phenomenon.
View Article and Find Full Text PDFDiffusion of ions due to temperature gradients (known as thermal diffusion) in charged nanochannels is of interest in several engineering fields, including energy recovery and environmental protection. This paper presents a fundamental investigation of the thermal diffusion of sodium chloride in charged silica nanochannels performed by molecular dynamics (MD). The results reveal the effects of nanoconfinement and surface charges on the sign and magnitude of the Soret coefficient.
View Article and Find Full Text PDFDamage initiation and crack propagation in concrete are associated with localisation of energy dissipation by the concrete meso-structure. Meso-scale models are, therefore, required for realistic analysis of concrete non-linear behaviour. Such models are constructed either from X-ray Computed Tomography images (image-based modelling) or by in silico meso-structure generation (parametric modelling), while both approaches are widely used and their advantages and disadvantages are recognised, little work is done on comparing their performance in predicting measured macroscopic behaviour with equivalent constitutive relations for meso-structural features.
View Article and Find Full Text PDFDuctile-to-brittle-transition refers to observable change in fracture mode with decreasing temperature-from slow ductile crack growth to rapid cleavage. It is exhibited by body-centred cubic metals and presents a challenge for integrity assessment of structural components made of such metals. Local approaches to cleavage fracture, based on Weibull stress as a cleavage crack-driving force, have been shown to predict fracture toughness at very low temperatures.
View Article and Find Full Text PDFUnderstanding thermo-osmosis in nanoscale channels and pores is essential for both theoretical advances of thermally induced mass flow and a wide range of emerging industrial applications. We present a new mechanistic understanding and quantification of thermo-osmosis at nanometric/sub-nanometric length scales and link the outcomes with the non-equilibrium thermodynamics of the phenomenon. The work is focused on thermo-osmosis of water in quartz slit nanochannels, which is analysed by molecular dynamics (MD) simulations of mechano-caloric and thermo-osmotic systems.
View Article and Find Full Text PDFUnderstanding the influence of colloids on radionuclide migration is of significance to evaluate environmental risks for radioactive waste disposals. In order to formulate an appropriate modelling framework that can quantify and interpret the anomalous transport of Strontium (Sr) in the absence and presence of colloids, the continuous time random walk (CTRW) approach is implemented in this work using available experimental information. The results show that the transport of Sr and its recovery are enhanced in the presence of colloids.
View Article and Find Full Text PDFPore network models have been applied widely for simulating a variety of different physical and chemical processes, including phase exchange, non-Newtonian displacement, non-Darcy flow, reactive transport and thermodynamically consistent oil layers. The realism of such modelling, i.e.
View Article and Find Full Text PDFCompacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution.
View Article and Find Full Text PDF