Activating mutations in different domains of the ABCC8 gene-coded sulfonylurea receptor 1 (SUR1) cause neonatal diabetes. Here we show that a diabetogenic mutation in an unexplored helix preceding the ABC core of SUR1 dramatically increases open probability of (SUR1/Kir6.2)(4) channel (KATP) by reciprocally changing rates of its transitions to and from the long-lived, inhibitory ligand-stabilized closed state.
View Article and Find Full Text PDFATP/ADP-sensing (sulfonylurea receptor (SUR)/K(IR)6)(4) K(ATP) channels regulate the excitability of our insulin secreting and other vital cells via the differential MgATP/ADP-dependent stimulatory actions of their tissue-specific ATP-binding cassette regulatory subunits (sulfonylurea receptors), which counterbalance the nearly constant inhibitory action of ATP on the K(+) inwardly rectifying pore. Mutations in SUR1 that abolish its stimulation have been found in infants persistently releasing insulin. Activating mutations in SUR1 have been shown to cause neonatal diabetes.
View Article and Find Full Text PDFBackground: The ATP-sensitive potassium (K(ATP)) channel, composed of the beta-cell proteins sulfonylurea receptor (SUR1) and inward-rectifying potassium channel subunit Kir6.2, is a key regulator of insulin release. It is inhibited by the binding of adenine nucleotides to subunit Kir6.
View Article and Find Full Text PDFA multidisciplinary effort over twenty years has provided deep insight into the nature of K(ATP) channels. First discovered in cardiomyocytes and pancreatic beta-cells, as ubiquitous sensors of the ADP/ATP ratio they are implicated in multiple disorders characterized by the uncoupling of excitation from metabolism. Composed of two disparate subunits these large octameric channels present a formidable challenge to scientists interested in understanding mechanism in physical, chemical, and structural terms.
View Article and Find Full Text PDFStructure-function analyses of K+ channels identify a common pore architecture whose gating depends on diverse signal sensing elements. The "gatekeepers" of the long, ATP-inhibited KIR6.0 pores of KATP channels are ABC proteins, SURs, receptors for channel opening and closing drugs.
View Article and Find Full Text PDFNtp and Ctp, synthetic peptides based on the N- and C-terminal sequences of K(IR)6.0, respectively, were used to probe gating of K(IR)6.0/SUR K(ATP) channels.
View Article and Find Full Text PDF