Publications by authors named "Andrey P Anisimov"

, the cause of plague, is a newly evolved Gram-negative bacterium. Through the acquisition of the plasminogen activator (Pla), gained the means to rapidly disseminate throughout its mammalian hosts. It was suggested that utilizes Pla to interact with the DEC-205 (CD205) receptor on antigen-presenting cells (APCs) to initiate host dissemination and infection.

View Article and Find Full Text PDF

To develop a modern plague vaccine, we used hypo-endotoxic   bacterial ghosts (BGs) with combinations of genes encoding the bacteriophage ɸX174 lysis-mediating protein E and/or holin-endolysin systems from λ or L-413C phages. Expression of the protein E gene resulted in the BGs that retained the shape of the original bacterium. Co-expression of this gene with genes coding for holin-endolysin system of the phage L-413C caused formation of structures resembling collapsed sacs.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS), localized in the outer leaflet of the outer membrane, serves as the major surface component of the Gram-negative bacterial cell envelope responsible for the activation of the host's innate immune system. Variations of the LPS structure utilized by Gram-negative bacteria promote survival by providing resistance to components of the innate immune system and preventing recognition by TLR4. This review summarizes studies of the biosynthesis of Yersinia pseudotuberculosis complex LPSs, and the roles of their structural components in molecular mechanisms of yersiniae pathogenesis and immunogenesis.

View Article and Find Full Text PDF

Bacterial DNAs are constantly detected in atherosclerotic plaques (APs), suggesting that a combination of chronic infection and inflammation may have roles in AP formation. A series of studies suggested that certain Gram-negative bacteria were able to interact with dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin [DC-SIGN; cluster of differentiation (CD) 209] or langerin (CD207), thereby resulting in deposition of CD209s at infection sites. We wondered if (a member of Proteobacteria family) could interact with APs through CD209/CD207.

View Article and Find Full Text PDF

Despite the relatively low incidence of plague, its etiological agent, , is an exceptional epidemic danger due to the high infectivity and mortality of this infectious disease. Reports on the isolation of drug-resistant strains indicate the advisability of using asymmetric responses, such as phage therapy and vaccine prophylaxis in the fight against this problem. The current relatively effective live plague vaccine is not approved for use in most countries because of its ability to cause heavy local and system reactions and even a generalized infectious process in people with a repressed immune status or metabolic disorders, as well as lethal infection in some species of nonhuman primates.

View Article and Find Full Text PDF

The Gram-negative bacterium causes plague, a fatal flea-borne anthropozoonosis, which can progress to aerosol-transmitted pneumonia. overcomes the innate immunity of its host thanks to many pathogenicity factors, including plasminogen activator, Pla. This factor is a broad-spectrum outer membrane protease also acting as adhesin and invasin.

View Article and Find Full Text PDF
Article Synopsis
  • The outer membrane of gram-negative bacteria, particularly in Yersinia pestis (the plague-causing bacterium), plays a crucial role in its ability to survive and thrive in hosts by resisting immune responses and antibiotics.
  • The proteins Ail and lipopolysaccharide (LPS) work together to enhance bacterial virulence by modifying the membrane structure and thickness, which helps the bacteria avoid detection and destruction by the human immune system.
  • The study emphasizes the significance of the combined action of Ail and LPS, suggesting that targeting this interaction could offer new strategies for combating Y. pestis infections.
View Article and Find Full Text PDF
Article Synopsis
  • A Gram-negative bacterium, which causes plague, evolved from a milder enteric disease, but the exact mechanisms behind its transformation into a virulent pathogen are still unclear.
  • The ability of the plague bacterium to spread rapidly is a key feature of its infection process.
  • The study reveals that the loss of a specific component (O-antigen) from its cell structure enables the bacterium to interact with immune cells, leading to its spread throughout the body and the onset of a serious infection.
View Article and Find Full Text PDF

We here report the draft genome sequences of 8 subsp. bv. caucasica strains isolated from the East Caucasian (previous name, Dagestan) mountain focus (no.

View Article and Find Full Text PDF

It has been shown previously that several endemic Y. pestis isolates with limited virulence contained the I259 isoform of the outer membrane protease Pla, while the epidemic highly virulent strains possessed only the T259 Pla isoform. Our sequence analysis of the pla gene from 118 Y.

View Article and Find Full Text PDF

Yersinia pestis Caf1 is a multifunctional protein responsible for antiphagocytic activity and is a key protective antigen. It is generally conserved between globally distributed Y. pestis strains, but Y.

View Article and Find Full Text PDF

The Yersinia pestis outer membrane porin F (OmpF) is a transmembrane protein located in the outer membrane of this Gram-negative bacterium which is the causative agent of plague, where it plays a significant role in controlling the selective permeability of the membrane. The amino acid sequences of OmpF proteins from 48 Y. pestis strains representing all currently available phylogenetic groups of this Gram-negative bacterium were recently deduced.

View Article and Find Full Text PDF

Antibiotic therapy of plague is hampered by the recent isolation of Yersinia pestis strain resistant to all of antibiotics recommended for cure. This has constrained a quest for new antimicrobials taking aim at alternative targets. Recently Y.

View Article and Find Full Text PDF

The etiologic agent of plague, Yersinia pestis, includes two subspecies, of which Y. pestis subsp. microtus contains the strains that cause only occasional diseases in humans that are not accompanied by human-to-human transmission.

View Article and Find Full Text PDF

A phosphorylated O-polysaccharide was isolated from the lipopolysaccharide of an entomopathogenic bacterium Photorhabdus temperata subsp. cinerea 3240 and studied by sugar analysis, dephosphorylation, and (1)H and (13)C NMR spectroscopy. The following structure of the linear trisaccharide repeating unit of the O-polysaccharide was established: →3)-β-D-GalpNAc4PEtN-(1→4)-β-D-GlcpA-(1→3)-β-D-FucpNAc4N-(1→ where GlcA indicates glucuronic acid, FucNAc4N 2-acetamido-4-amino-2,4,6-trideoxygalactose, and PEtN 2-aminoethyl phosphate.

View Article and Find Full Text PDF

Plague, one of the most devastating infectious diseases in human history, is caused by the bacterial species Yersinia pestis. A live attenuated Y. pestis strain (EV76) has been widely used as a plague vaccine in various countries around the world.

View Article and Find Full Text PDF

O-Polysaccharide was isolated from the lipopolysaccharide of an entomopathogenic bacterium Photorhabdus temperata subsp. temperata XlNach(T). Sugar analysis after full acid hydrolysis of the polysaccharide revealed D-glucose, D-mannose, D-galactose, D-GalNAc, and a branched monosaccharide, 3,6-dideoxy-4-C-[(S)-1',2'-dihydroxyethyl]-D-xylo-hexose (Sug), which was isolated as a 1,2'-anhydro furanose derivative.

View Article and Find Full Text PDF

We report the first draft genome sequences of two Yersinia pseudotuberculosis sequence type 43 (ST43) (O:1b) strains, B-7194 and B-7195, isolated in Russia. The total lengths of the assemblies are 4,427,121 bp and 4,608,472 bp, and 3,819 and 4,018 coding sequences, respectively, were predicted within the genomes.

View Article and Find Full Text PDF

We report the first draft genome sequences of five Yersinia pseudotuberculosis isolates of sequence type (ST) 19 and of a variant from one of the five isolates. The total length of assemblies ranged from 4,226,485 bp to 4,274,148 bp, including between 3,808 and 3,843 predicted coding sequences.

View Article and Find Full Text PDF

The O-polysaccharide from the lipopolysaccharide of a symbiotic bacterium Photorhabdus luminescens subsp. laumondii TT01 from an insect-pathogenic nematode was studied by sugar analysis and (1)H and (13)C NMR spectroscopy and found to contain D-glycero-D-manno-heptose (DDHep) and 3,6-dideoxy-3-formamido-D-glucose (D-Qui3NFo). The following structure of the pentasaccharide repeating unit of the O-polysaccharide was established:

View Article and Find Full Text PDF

An O-polysaccharide was isolated by mild acid degradation at pH 4.5 of the long-chain lipopolysaccharide of Yersinia pseudotuberculosis PB1 (serotype O:1a) and studied using 2D NMR spectroscopy. It was found to contain two uncommon monosaccharides: paratose (3,6-dideoxy-d-ribo-hexose, Par) in the furanose form and 6-deoxy-d-manno-heptose (d-6dmanHep).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjfmgsa9r5jt1flt7tqpm8noea60smda5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once