Brush-like graft copolymers (A-g-B), in which linear A-blocks are randomly grafted onto the backbone of a brush-like B-block, exhibit intense strain-stiffening and high mechanical strength on par with load-bearing biological tissues such as skin and blood vessels. To elucidate molecular mechanisms underlying this tissue-mimetic behavior, in situ synchrotron X-ray scattering was measured during uniaxial stretching of bottlebrush- and comb-like graft copolymers with varying densities of poly(dimethyl siloxane) and poly(isobutylene) side chains. In an undeformed state, these copolymers revealed a single interference peak corresponding to the average spacing between the domains of linear A-blocks arranged in a disordered, liquid-like configuration.
View Article and Find Full Text PDFDue to the absence of specific interactions, carbosilane dendrimers are ideal models to study the effect of a hyperbranched regular structure on the molecular response to external influences. In this work, we have studied the conformational behavior of single polybutylcarbosilane dendrimers under confinement between impermeable flat surfaces using atomistic molecular dynamics simulations. Dendrimers of different generations belonging to two homologous series with a tetra-functional core and three- and four-functional branches were simulated.
View Article and Find Full Text PDFA series of carbosilane dendrimers of the 4th, 6th, and 7th generations with a terminal trimethylsilylsiloxane layer was synthesized. Theoretical models of these dendrimers were developed, and equilibrium dendrimer conformations obtained via molecular dynamics simulations were in a good agreement with experimental small-angle X-ray scattering (SAXS) data demonstrating molecule monodispersity and an almost spherical shape. It was confirmed that the glass transition temperature is independent of the dendrimer generation, but is greatly affected by the chemical nature of the dendrimer terminal groups.
View Article and Find Full Text PDFWe studied the conformational behavior of silicon-containing dendrimers during their adsorption onto a flat impenetrable surface by molecular dynamics (MD) simulations. Four homologous series of dendrimers from the 4th up to the 7th generations were modeled, namely, two types of carbosilane dendrimers differing by the functionality of the core Si atom and two types of siloxane dendrimers with different lengths of the spacers. Comparative analysis of the fractions of adsorbed atoms belonging to various structural layers within dendrimers as well as density profiles allowed us to elucidate not only some general trends but also the effects determined by dendrimer specificity.
View Article and Find Full Text PDFThe structure and properties of polysiloxane dendrimer melts are studied by extensive atomistic molecular dynamics simulations. Two homologous series differing in the spacer length are considered. In the first series the dendrimer spacers are the shortest ones, comprising only one oxygen atom, while in the second series the spacers consist of two oxygen atoms with the silicon atom in between.
View Article and Find Full Text PDFA comparative analysis of intramolecular dynamics of four types of isolated dendrimers from the fourth to the seventh generations belonging to the siloxane and carbosilane families, differing in spacer length, core functionality, and the type of chemical bonds, has been performed via atomic molecular dynamics simulations. The average radial and angular positions of all Si branching atoms of various topological layers within the dendrimer interior, as well as their variations, have been calculated, and the distributions of the relaxation times of their radial and angular motions have been found. It has been shown that the dendrons of all the dendrimers elongate from the center and decrease in a solid angle with an increasing generation number.
View Article and Find Full Text PDF