Publications by authors named "Andrey Novitsky"

Asymmetric optical transmission (AOT) has been an enduring hot topic of interest in various fields, including optical communication, information processing, and so on. Particularly, the development of reciprocal micro-nanostructures achieving AOT further facilitates and accelerates the miniaturization and integration of traditional optical components. However, most of these optical components merely consider a single AOT band and transmission in a specified direction, limiting the development of their versatile functions.

View Article and Find Full Text PDF

Optical and acoustic tractor beams are currently the focus of intense research due to their counterintuitive property of exerting a pulling force on small scattering objects. In this Letter we propose a matter-wave tractor beam and utilize the de Broglie waves of nonrelativistic matter particles in analogy to "classical" tractor beams. We reveal the presence of the quantum-mechanical pulling force for the variety of quantum mechanical potentials observing the resonant enhancement of the pulling effect under the conditions of the suppressed scattering known as the Ramsauer-Townsend effect.

View Article and Find Full Text PDF

In order to pull objects towards the light source a single tractor beam inevitably needs to be strongly nonparaxial. This stringent requirement makes such a tractor beam somewhat hypothetical. Here we reveal that the cylindrical shape of dielectric particles can effectively mitigate the nonparaxiality requirements, reducing the incidence angle of the partial plane waves of the light beam down to 45° and even to 30° for respectively dipole and dipole-quadrupole objects.

View Article and Find Full Text PDF

We demonstrate that optical Fano resonance can be induced by the anisotropy of a cylinder rather than frequency selection under the resonant condition. A tiny perturbation in anisotropy can result in a giant switch in the principal optic axis near plasmon resonance. Such anisotropy-induced Fano resonance shows fast reversion between forward and backward scattering at the lowest-energy interference.

View Article and Find Full Text PDF

A Bessel beam without an axial gradient can exert a pulling force on an object [A. Novitsky, C. W.

View Article and Find Full Text PDF

Usually a light beam pushes a particle when the photons act upon it. We investigate the optical forces by nonparaxial gradientless beams and find that the forces can drag suitable particles all the way towards the light source. The major criterion of realizing the backward dragging force is the strong nonparaxiality of the light beam, which contributes to the pulling force owing to momentum conservation.

View Article and Find Full Text PDF

An inverse way to define the parameters of cylindrical cloaks is developed, in which the cloaking parameters can be independently obtained without any knowledge of the corresponding coordinate transformation. The required parameters are derived in terms of the integral form of cloaking generators, which are very general and allow us to examine the significance of the parametric profiles. The validity of such inverse way and the invisibility characteristics are presented in full-wave numerical simulation of plane wave scattering by cloaked cylinders.

View Article and Find Full Text PDF

We report on the propagation dynamics of Airy light beams under nonparaxial conditions. The partial waves forming the Airy beam can be divided into two parts, the first of which contains only propagating waves, while the second part consists of evanescent waves. In this Letter we propose the concept of the evanescent Airy beam.

View Article and Find Full Text PDF

An analytical method of electromagnetic wave interactions with a general radially anisotropic cloak is established. It is able to deal with arbitrary parameters [ epsilon r (r) , mu r (r) , epsilon t (r) , and mu t (r) ] of a radially anisotropic inhomogeneous shell. The general cloaking condition is proposed from the wave relations, in contrast to the method of transformation optics.

View Article and Find Full Text PDF

We employ a homogenization technique based on the Lorentz electronic theory to show that planar chiral structures (PCSs) can be described by an effective dielectric tensor similar to that of biaxial elliptically dichroic crystals. Such a crystal is shown to behave like a PCS insofar as it exhibits its characteristic optical properties, namely, corotating elliptical polarization eigenstates and asymmetric, direction-dependent transmission for left- or right-handed incident wave polarization.

View Article and Find Full Text PDF

Energy characteristics of the superposition of TE- and TM-polarized electromagnetic Bessel beams are studied. For some phase differences between TE and TM waves the components of the Poynting vector vary in sign. We call this situation "negative propagation," because locally the beam may behave like a wave propagating in the direction opposite to the conventional one.

View Article and Find Full Text PDF