Publications by authors named "Andrey Lokhov"

Recent years have seen a lot of progress in algorithms for learning parameters of spreading dynamics from both full and partial data. Some of the remaining challenges include model selection under the scenarios of unknown network structure, noisy data, missing observations in time, as well as an efficient incorporation of prior information to minimize the number of samples required for an accurate learning. Here, we introduce a universal learning method based on a scalable dynamic message-passing technique that addresses these challenges often encountered in real data.

View Article and Find Full Text PDF
Article Synopsis
  • Cholera remains a significant global health issue, making it crucial to understand its transmission dynamics for effective intervention.
  • Recent advances show potential in using whole-genome sequencing data, along with traditional case-count data, to model cholera spread more accurately.
  • This study compares estimates from both data sources during the 1991-1998 cholera outbreak in Argentina and confirms that genomic methods can provide reliable insights, paving the way for integrated models in cholera and other bacterial disease research.
View Article and Find Full Text PDF

The ability to accurately and efficiently compute quantum-mechanical partial atomistic charges has many practical applications, such as calculations of IR spectra, analysis of chemical bonding, and classical force field parametrization. Machine learning (ML) techniques provide a possible avenue for the efficient prediction of atomic partial charges. Modern ML advances in the prediction of molecular energies [i.

View Article and Find Full Text PDF

Partial atomic charge assignment is of immense practical value to force field parametrization, molecular docking, and cheminformatics. Machine learning has emerged as a powerful tool for modeling chemistry at unprecedented computational speeds given accurate reference data. However, certain tasks, such as charge assignment, do not have a unique solution.

View Article and Find Full Text PDF

Reconstruction of the structure and parameters of an Ising model from binary samples is a problem of practical importance in a variety of disciplines, ranging from statistical physics and computational biology to image processing and machine learning. The focus of the research community shifted toward developing universal reconstruction algorithms that are both computationally efficient and require the minimal amount of expensive data. We introduce a new method, interaction screening, which accurately estimates model parameters using local optimization problems.

View Article and Find Full Text PDF

The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of "influential spreaders" for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distribution of available resources hence results from an interplay between network topology and spreading dynamics.

View Article and Find Full Text PDF

Understanding and quantifying the dynamics of disordered out-of-equilibrium models is an important problem in many branches of science. Using the dynamic cavity method on time trajectories, we construct a general procedure for deriving the dynamic message-passing equations for a large class of models with unidirectional dynamics, which includes the zero-temperature random-field Ising model, the susceptible-infected-recovered model, and rumor spreading models. We show that unidirectionality of the dynamics is the key ingredient that makes the problem solvable.

View Article and Find Full Text PDF

We study the problem of estimating the origin of an epidemic outbreak: given a contact network and a snapshot of epidemic spread at a certain time, determine the infection source. This problem is important in different contexts of computer or social networks. Assuming that the epidemic spread follows the usual susceptible-infected-recovered model, we introduce an inference algorithm based on dynamic message-passing equations and we show that it leads to significant improvement of performance compared to existing approaches.

View Article and Find Full Text PDF

We study the planar matching problem, defined by a symmetric random matrix with independent identically distributed entries, taking values zero and one. We show that the existence of a perfect planar matching structure is possible only above a certain critical density, p(c), of allowed contacts (i.e.

View Article and Find Full Text PDF