Publications by authors named "Andrey Krasnopeev"

In this study, we analyzed the transcriptomes of RNA and DNA viruses from the oligotrophic water of Lake Baikal and the effluent from wastewater treatment plants (WWTPs) discharged into the lake from the towns of Severobaikalsk and Slyudyanka located on the lake shores. Given the uniqueness and importance of Lake Baikal, the issues of biodiversity conservation and the monitoring of potential virological hazards to hydrobionts and humans are important. Wastewater treatment plants discharge treated effluent directly into the lake.

View Article and Find Full Text PDF

The proliferation of benthic cyanobacteria has been observed in Lake Baikal since 2011 and is a vivid manifestation of the ecological crisis occurring in the littoral zone. The cyanobacterium sp. has formed massive fouling on all types of benthic substrates, including endemic Baikal sponges.

View Article and Find Full Text PDF

For the first time, microcystin-producing cyanobacteria have been detected in Khubsugul, which is ancient, pristine and one of the world's largest lakes. The microcystin synthetase genes belonged to the genera , and possibly spp. No microcystins were found in the water of the lake.

View Article and Find Full Text PDF

This article characterises viral fraction metatranscriptomes (smaller than 0.2 µm) from the pelagic zone of oligotrophic Lake Baikal (Russia). The study revealed the dominance of transcripts of DNA viruses: bacteriophages and algal viruses.

View Article and Find Full Text PDF

The diversity of aerobic anoxygenic phototrophs (AAPs) and rhodopsin-containing bacteria in the surface microlayer, water column, and epilithic biofilms of Lake Baikal was studied for the first time, employing and rhodopsin genes, and compared to 16S rRNA diversity. We detected -containing Alphaproteobacteria (orders Rhodobacterales, Rhizobiales, Rhodospirillales, and Sphingomonadales), Betaproteobacteria (order Burkholderiales), Gemmatimonadetes, and Planctomycetes. Rhodobacterales dominated all the studied biotopes.

View Article and Find Full Text PDF

This study describes two viral communities from the world's oldest lake, Lake Baikal. For the analysis, we chose under-ice and late spring periods of the year as the most productive for Lake Baikal. These periods show the maximum seasonal biomass of phytoplankton and bacterioplankton, which are targets for viruses, including bacteriophages.

View Article and Find Full Text PDF

In this study, we analysed the diversity and composition of double-stranded DNA viral and bacterial communities within the sample of surface coastal water of Southern Baikal through metagenomics and deep sequencing of the 16S ribosomal RNA gene, respectively. The 16S rRNA gene analysis has revealed 14 phyla and dominance of the 'Actinobacteria' (43.6%), 'Proteobacteria' (25.

View Article and Find Full Text PDF

We have assessed the diversity of bacteria near oil-methane (area I) and methane (area II) seeps in the pelagic zone of Lake Baikal using massive parallel sequencing of 16S rRNA, pmoA, and mxaF gene fragments amplified from total DNA. At depths from the surface to 100 m, sequences belonging to Cyanobacteria dominated. In the communities to a depth of 200 m of the studied areas, Proteobacteria dominated the deeper layers of the water column.

View Article and Find Full Text PDF

Based on second generation sequencing (MiSeq platform, Illumina), we determined the genetic diversity of T4-like bacteriophages of the family Myoviridae by analysing fragments of the major capsid protein gene g23 in the plankton of Lake Baikal. The sampling depth in our study was significantly higher than in those obtained by the Sanger method before. We obtained 33 701 sequences of the g23 gene fragments, 141 operational taxonomic units (OTUs) of which were identified.

View Article and Find Full Text PDF