Publications by authors named "Andrey Gedich"

Artificial Intelligence is revolutionizing many aspects of the pharmaceutical industry. Deep learning models are now routinely applied to guide drug discovery projects leading to faster and improved findings, but there are still many tasks with enormous unrealized potential. One such task is the reaction yield prediction.

View Article and Find Full Text PDF

This work introduces , a new algorithm for reaction atom-to-atom mapping (AAM) based on a transformer neural network adopted for the direct processing of molecular graphs as sets of atoms and bonds, as opposed to SMILES/SELFIES sequence-based approaches, in combination with the Bidirectional Encoder Representations from Transformers (BERT) network. The graph transformer serves to extract molecular features that are tied to atoms and bonds. The BERT network is used for chemical transformation learning.

View Article and Find Full Text PDF

The quality of experimental data for chemical reactions is a critical consideration for any reaction-driven study. However, the curation of reaction data has not been extensively discussed in the literature so far. Here, we suggest a 4 steps protocol that includes the curation of individual structures (reactants and products), chemical transformations, reaction conditions and endpoints.

View Article and Find Full Text PDF