We present a wave packet propagation-based method to study the electron dynamics in molecular species in the gas phase and adsorbed on metal surfaces. It is a very general method that can be employed to any system where the electron dynamics is dominated by an active electron and the coupling between the discrete and continuum electronic states is of importance. As an example, one can consider resonant molecule-surface electron transfer or molecular photoionization.
View Article and Find Full Text PDFThe dynamics of ultrafast electron currents triggered by femtosecond laser pulse irradiation of narrow gaps in a plasmonic dimer is studied using quantum mechanical Time-Dependent Density Functional Theory (TDDFT). The electrons are injected into the gap due to the optical field emission from the surfaces of the metal nanoparticles across the junction. Further evolution of the electron currents in the gap is governed by the locally enhanced electric fields.
View Article and Find Full Text PDF: Recent advances in attosecond spectroscopy techniques have fueled the interest in the theoretical description of electronic processes taking place in the subfemtosecond time scale. Here we study the coupled dynamic screening of a localized hole and a photoelectron emitted from a metal cluster using a semi-classical model. Electron density dynamics in the cluster is calculated with time-dependent density functional theory, and the motion of the photoemitted electron is described classically.
View Article and Find Full Text PDFThe high stability of a low temperature (9 K) scanning tunneling microscope junction is used to precisely adjust the enhancement of an external pulsed vacuum ultraviolet (VUV) laser. The ensuing VUV optical-field strength is mapped on an hydrogenated Si(100) surface by imprinting locally one-photon atomic scale hydrogen desorption. Subsequent to irradiation, topography of the Si(100):H surface at the reacted area revealed a desorption spot with unprecedented atomic precision.
View Article and Find Full Text PDFThe present theoretical study shows that a double chain of Cu metal atoms adsorbed on a Cu(111) metal surface can guide an excited electron for distances exceeding 10 nm. The nanostructure appears to be quasi-decoupled from the substrate and thus to act as a nanowire. The origin of the above phenomenon is the interference between the decay of the quasistationary 1D sp-band states localized on each chain.
View Article and Find Full Text PDFWe present a joint experimental-theoretical study of the one-dimensional band of excited electronic states with sp character localized on Cu nanowires supported on a Cu(111) surface. Energy dispersion and lifetime of these states have been obtained, allowing the determination of the mean distance traveled by an excited electron along the nanowire before it escapes into the substrate. We show that a Cu nanowire supported on a Cu(111) surface can guide a one-dimensional electron flux over a short distance and thus can be considered as a possible component for nanoelectronics devices.
View Article and Find Full Text PDF