We develop and experimentally demonstrate a methodology for a full molecular frame quantum tomography (MFQT) of dynamical polyatomic systems. We exemplify this approach through the complete characterization of an electronically nonadiabatic wave packet in ammonia (NH_{3}). The method exploits both energy and time-domain spectroscopic data, and yields the lab frame density matrix (LFDM) for the system, the elements of which are populations and coherences.
View Article and Find Full Text PDFThe 2D photoelectron velocity map imaging (VMI) technique is commonly employed in gas-phase molecular spectroscopy and dynamics investigations due to its ability to efficiently extract photoelectron spectra and angular distributions in a single experiment. However, the standard technique is limited to specific light-source polarization geometries. This has led to significant interest in the development of 3D VMI techniques, which are capable of measuring individual electron positions and arrival times, obtaining the full 3D distribution without the need for inversion, forward-convolution, or tomographic reconstruction approaches.
View Article and Find Full Text PDFWe combined tunable vacuum-ultraviolet time-resolved photoelectron spectroscopy (VUV-TRPES) with high-level quantum dynamics simulations to disentangle multistate Rydberg-valence dynamics in acetone. A femtosecond 8.09 eV pump pulse was tuned to the sharp origin of the A(n3d) band.
View Article and Find Full Text PDFWe present the first vacuum ultraviolet time-resolved photoelectron spectroscopy (VUV-TRPES) study of photoisomerization dynamics in the paradigmatic molecule -stilbene. A key reaction intermediate in its dynamics, known as the phantom state, has often been invoked but never directly detected in the gas phase. We report direct spectral signatures of the phantom state in isolated -stilbene, observed and characterized through a combination of VUV-TRPES and multiple spawning (AIMS) nonadiabatic dynamics simulations of the channel-resolved observable.
View Article and Find Full Text PDFThe optical formation of coherent superposition states, a wavepacket, can allow the study of zeroth-order states, the evolution of which exhibit structural and electronic changes as a function of time: this leads to the notion of a molecular movie. Intramolecular vibrational energy redistribution, due to anharmonic coupling between modes, is the molecular movie considered here. There is no guarantee, however, that the formed superposition will behave semi-classically (e.
View Article and Find Full Text PDFFunctional group substituents are a ubiquitous tool in ground-state organic chemistry often employed to fine-tune chemical properties and obtain desired chemical reaction outcomes. Their effect on photoexcited electronic states, however, remains poorly understood. To help build an intuition for these effects, we have studied ethylene, substituted with electron acceptor (cyano) and/or electron donor (methoxy) substituents, both theoretically and experimentally: using ab initio quantum molecular dynamics and time-resolved photoelectron spectroscopy.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2020
The vacuum ultraviolet (VUV) absorption spectra of cyclic ethers consist primarily of Rydberg ← n transitions. By studying three cyclic ethers of varying ring size (tetrahydropyran, tetrahydrofuran and trimethylene oxide, n = 6-4), we investigated the influence of ring size on the VUV excited-state dynamics of the 3d Rydberg manifold using time-resolved photoelectron spectroscopy (TRPES), time-resolved mass spectroscopy (TRMS) and ab initio electronic structure calculations. Whereas neither the electronic characters nor the term energies of the excited-states are substantially modified when the ring-size is reduced from n = 6 to 5 to 4, the excited-state lifetimes concomitantly decrease five-fold.
View Article and Find Full Text PDFThe photochemical dynamics of double-bond-containing hydrocarbons is exemplified by the smallest alkenes, ethylene and butadiene. Chemical substituents can alter both decay timescales and photoproducts through a combination of inertial effects due to substituent mass, steric effects due to substituent size, and electronic (or potential) effects due to perturbative changes to the electronic potential energy surface. Here, we demonstrate the interplay of different substituent effects on 1,3-butadiene and its methylated derivatives using a combination of ab initio simulation of nonadiabatic dynamics and time-resolved photoelectron spectroscopy.
View Article and Find Full Text PDFTime-resolved photoelectron spectroscopy in combination with ab initio quantum chemistry calculations was used to study ultrafast excited state dynamics in formamide (FOR), N,N-dimethylformamide (DMF), and N,N-dimethylacetamide (DMA) following 160 nm excitation. The particular focus was on internal conversion processes within the excited state Rydberg manifold and on how this behavior in amides compared with previous observations in small amines. All three amides exhibited extremely rapid (<100 fs) evolution from the Franck-Condon region.
View Article and Find Full Text PDFThe vacuum-ultraviolet photoinduced dynamics of cyclopropane (CH) were studied using time-resolved photoelectron spectroscopy (TRPES) in conjunction with quantum dynamics simulations. Following excitation at 160.8 nm, and subsequent probing via photoionization at 266.
View Article and Find Full Text PDFWe study the Strong-Field Ionization (SFI) of the hydrocarbon 1-butene as a function of wavelength using photoion-photoelectron covariance and coincidence spectroscopy. We observe a striking transition in the fragment-associated photoelectron spectra: from a single Above Threshold Ionization (ATI) progression for photon energies less than the cation D0-D1 gap to two ATI progressions for a photon energy greater than this gap. For the first case, electronically excited cations are created by SFI populating the ground cationic state D0, followed by sequential post-ionization excitation.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFThe ultrafast excited state dynamics of the smallest polyene, trans-1,3-butadiene, were studied by femtosecond time-resolved photoelectron-photoion coincidence (TRPEPICO) spectroscopy. The evolution of the excited state wavepacket, created by pumping the bright B (ππ*) electronic state at its origin of 216 nm, is projected via one- and two-photon ionization at 267 nm onto several ionization continua. The results are interpreted in terms of Koopmans' correlations and Franck-Condon factors for the excited and cationic states involved.
View Article and Find Full Text PDFThe excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene (BD), has long been the subject of controversy due to its strong coupling, ultrafast time scales and the difficulties that theory faces in describing the relevant electronic states in a balanced fashion. Here we apply Ab Initio Multiple Spawning (AIMS) using state-averaged complete active space multistate second order perturbation theory [SA-3-CAS(4/4)-MSPT2] which describes both static and dynamic electron correlation effects, providing a balanced description of both the initially prepared bright 1B (ππ*) state and non-adiabatically coupled dark 2A state of BD. Importantly, AIMS allows for on-the-fly calculations of experimental observables.
View Article and Find Full Text PDFStructural isomers, molecules having the same chemical formula but with atoms bonded in different order, are hard to identify using conventional spectroscopy and mass spectrometry. They exhibit virtually indistinguishable mass spectra when ionized by electrons. Laser mass spectrometry based on photoionization of the isomers has emerged as a promising alternative but requires shaped ultrafast laser pulses.
View Article and Find Full Text PDFJ Phys Chem A
December 2017
Transient absorption anisotropy is a well-established technique in time-resolved liquid phase spectroscopy. Here, we show how the technique is applied in the gas phase for time-resolved photoelectron spectroscopy and what type of additional information can be obtained as compared to other techniques. We exemplify its use by presenting results on rotational revivals in pyrazine after excitation at 324 nm and provide new insights into two recent experiments: (i) the difference between Rydberg and valence state excitation after one- and two-photon absorption in butadiene and (ii) excitation to the two lowest lying vibronic modes of the degenerate π3p Rydberg state in 1-azabicyclo[2.
View Article and Find Full Text PDFWe present an experimental femtosecond time-resolved study of the 399 nm excited state dynamics of nitrogen dioxide using channel-resolved above threshold ionization (CRATI) as the probe process. This method relies on photoelectron-photoion coincidence and covariance to correlate the strong-field photoelectron spectrum with ionic fragments, which label the channel. In all ionization channels observed, we report apparent oscillations in the ion and photoelectron yields as a function of pump-probe delay.
View Article and Find Full Text PDFWe report a joint experimental and theoretical study on the ultrafast excited state dynamics of allene and a series of its methylated analogues (1,2-butadiene, 1,1-dimethylallene, and tetramethylallene) in order to elucidate the conical intersection mediated dynamics that give rise to ultrafast relaxation to the ground electronic state. We use femtosecond time-resolved photoelectron spectroscopy (TRPES) to probe the coupled electronic-vibrational dynamics following UV excitation at 200 nm (6.2 eV).
View Article and Find Full Text PDFThe photolysis of o-nitrophenol (o-NP), a typical push-pull molecule, is of current interest in atmospheric chemistry as a possible source of nitrous acid (HONO). To characterize the largely unknown photolysis mechanism, the dynamics of the lowest lying excited singlet state (S1) of o-NP was investigated by means of femtosecond transient absorption spectroscopy in solution, time-resolved photoelectron spectroscopy (TRPES) in the gas phase and quantum chemical calculations. Evidence of the unstable aci-nitro isomer is provided both in the liquid and in the gas phase.
View Article and Find Full Text PDFThe excited state dynamics of isolated sulfur dioxide molecules have been investigated using the time-resolved photoelectron spectroscopy and time-resolved photoelectron-photoion coincidence techniques. Excited state wavepackets were prepared in the spectroscopically complex, electronically mixed (B̃)(1)B1/(Ã)(1)A2, Clements manifold following broadband excitation at a range of photon energies between 4.03 eV and 4.
View Article and Find Full Text PDFTwo-photon absorption in systems with parity permits access to states that cannot be prepared by one-photon absorption. Here we present the first time-resolved photoelectron spectroscopy study using this technique, applied to 1,3-butadiene, in which we investigated the dynamics of its dark valence, Rydberg, and superexcited states. The dark valence state dynamics are accessed via the Rydberg manifold, excited by two photons of 400 nm.
View Article and Find Full Text PDFUsing selective methyl substitution, we study the effects of vibrational dynamics at conical intersections in unsaturated hydrocarbons. Here, we investigate the excited state nonadiabatic dynamics of cycloheptatriene (CHT) and its relation to dynamics in other polyenes by comparing CHT with 7-methyl CHT, 7-ethyl CHT, and perdeuterated CHT using time-resolved photoelectron spectroscopy and photoelectron anisotropy. Our results suggest that, upon ππ*-excitation to the bright 2A" state, we observe an early intersection with the dark 2A' state close to the Franck-Condon region with evidence of wavepacket bifurcation.
View Article and Find Full Text PDFExperiments in the gas phase usually involve averaging observables over a random molecular axis alignment distribution. This deleterious averaging limits insights gained by probes of molecular dynamics, but can be overcome by prealigning molecular axes using laser-alignment methods. However, the transformation from the laboratory frame to the molecular frame of reference requires quantitative knowledge of the axis alignment distribution.
View Article and Find Full Text PDFDihydroazulenes are interesting because of their photoswitching behavior. While the ring-opening to vinylheptafulvalene (VHF) is light induced, the back reaction is known to proceed thermally. In the present paper, we show the first gas phase study of the ring-opening reaction of 2-phenyl-1,8a-dihydroazulene-1,1-dicarbonitrile (Ph-DHA) by means of time-resolved photoelectron spectroscopy which permits us to follow the ring-opening process.
View Article and Find Full Text PDFExcited-state intramolecular proton transfer (ESIPT) in salicylideneaniline (SA) and selected derivatives substituted in the para position of the anilino group have been investigated by femtosecond time-resolved photoelectron spectroscopy (TRPES) and time-dependent density functional theory (TDDFT). SA has a twisted structure at the energetic minimum of the ground state, but ESIPT is assumed to take place through a planar structure, although this has not been fully established. The TRPES studies revealed that the excited-state dynamics within the S1 band varied significantly with excitation wavelength.
View Article and Find Full Text PDF