More than 27,000 stomachs from 70 species of fish were collected from the Barents Sea in 2015. Quantitative stomach content expressed relative to the body weight of the predator fish (g g as %) varied by four to five orders of magnitude for six species with the largest sample size (Atlantic cod Gadus morhua, haddock Melanogrammus aeglefinus, Greenland halibut Reinhardtius hippoglossoides, long rough dab Hippoglossoides platessoides, polar cod Boreogadus saida, and Atlantic capelin Mallotus villosus). The quantitative stomach contents of individual fish followed a common and strict statistical relationship for predator species or groups of species (by families), and for prey categories across predator species.
View Article and Find Full Text PDFThe warming trend of the Arctic is punctuated by several record-breaking warm years with very low sea ice concentrations. The nature and reversibility of marine ecosystem responses to these multiple extreme climatic events (ECEs) are poorly understood. Here, we investigate the ecological signatures of three successive bottom temperature maxima concomitant with surface ECEs between 2004 and 2017 in the Barents Sea across spatial and organizational scales.
View Article and Find Full Text PDFAs temperatures rise, motile species start to redistribute to more suitable areas, potentially affecting the persistence of several resident species and altering biodiversity and ecosystem functions. In the Barents Sea, a hotspot for global warming, marine fish from boreal regions have been increasingly found in the more exclusive Arctic region. Here, we show that this shift in species distribution is increasing species richness and evenness, and even more so, the functional diversity of the Arctic.
View Article and Find Full Text PDFThe polar cod (Boreogadus saida) has a circumpolar distribution and is the most abundant planktivorous fish in the Arctic. Declining sea-ice coverage impacts polar cod directly and also facilitates expansion of human activities in the region leading to increasing anthropogenic pressures on biota. Here we summarize current data and knowledge on polar cod from the Russian sector of the Barents Sea and discuss knowledge needs for the management of polar cod under changing environmental conditions and anthropogenic impacts.
View Article and Find Full Text PDFClimate change is commonly associated with many species redistributions and the influence of other factors may be marginalized, especially in the rapidly warming Arctic.The Barents Sea, a high latitude large marine ecosystem in the Northeast Atlantic has experienced above-average temperatures since the mid-2000s with divergent bottom temperature trends at subregional scales.Concurrently, the Barents Sea stock of Atlantic cod one of the most important commercial fish stocks in the world, increased following a large reduction in fishing pressure and expanded north of 80°N.
View Article and Find Full Text PDFDetermining the importance of physical and biological drivers in shaping biodiversity in diverse ecosystems remains a global challenge. Advancements have been made towards this end in large marine ecosystems with several studies suggesting environmental forcing as the primary driver. However, both empirical and theoretical studies point to additional drivers of changes in diversity involving trophic interactions and, in particular, predation.
View Article and Find Full Text PDFWhen facing environmental change and intensified anthropogenic impact on marine ecosystems, extensive knowledge of how these systems are functioning is required in order to manage them properly. However, in high-latitude ecosystems, where climate change is expected to have substantial ecological impact, the ecosystem functions of biological species have received little attention, partly due to the limited biological knowledge of Arctic species. Functional traits address the ecosystem functions of member species, allowing the functionality of communities to be characterised and the degree of functional redundancy to be assessed.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2017
Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales.
View Article and Find Full Text PDFClimate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea.
View Article and Find Full Text PDFUnder exploitation and environmental change, it is essential to assess the sensitivity and vulnerability of marine ecosystems to such stress. A species' response to stress depends on its life history. Sensitivity to harvesting is related to the life history "fast-slow" continuum, where "slow" species (i.
View Article and Find Full Text PDFThe Barents Sea system is often depicted as a simple food web in terms of number of dominant feeding links. The most conspicuous feeding link is between the Northeast Arctic cod Gadus morhua, the world's largest cod stock which is presently at a historical high level, and capelin Mallotus villosus. The system also holds diverse seabird and marine mammal communities.
View Article and Find Full Text PDFDirect and indirect effects of global warming are expected to be pronounced and fast in the Arctic, impacting terrestrial, freshwater and marine ecosystems. The Barents Sea is a high latitude shelf Sea and a boundary area between arctic and boreal faunas. These faunas are likely to respond differently to changes in climate.
View Article and Find Full Text PDF