The relevance of the Arctic regions' study is rapidly increasing due to the sensitive response of fragile ecosystems to climate change and anthropogenic pressure. The microbiome is an important component that determines the soils' functioning and an indicator of changes occurring in ecosystems. Rybachy Peninsula is the northernmost part of the continental European Russia and is almost completely surrounded by Barents Sea water.
View Article and Find Full Text PDFIn this study, for the first time, we report the identification and characterization of culturable fast-growing bacteria isolated from the sea-affected temporary meltwater ponds (MPs) in the East Antarctica area of the Vecherny region (-67.656317, 46.175058) of the Thala Hills Oasis, Enderby Land.
View Article and Find Full Text PDFInt J Environ Res Public Health
November 2021
Urbanization in the Arctic results in considerable and still poorly known environmental consequences. The effect of urbanization on soil microbiome-an ecosystem component highly sensitive to anthropogenic disturbance-remains overlooked for the Arctic region. The research compared chemical and microbial properties of the natural Podzol soils and urban soils of Murmansk-the largest Arctic city.
View Article and Find Full Text PDFSnow microorganisms play a significant role in climate change and affecting the snow melting rate in the Arctic and Antarctic regions. While research on algae inhabiting green and red snow has been performed extensively, bacteria dwelling in this biotope have been studied to a much lesser extent. In this study, we performed 16S rRNA gene amplicon sequencing of two green snow samples collected from the coastal area of the eastern part of Antarctica and conducted genotypic and phenotypic profiling of 45 fast-growing bacteria isolated from these samples.
View Article and Find Full Text PDFThe soils of East Antarctica have no rhizosphere with the bulk of organo-mineral interactions confined to the thin microbial and cryptogamic crusts that occur in open or cryptic niches and are collectively known as biological soil crust (BSC). Here we demonstrate that cryptic hypolithic varieties of BSC in the Larsemann Hills of East Antarctica contribute to the buildup of soil organic matter and produce several types of continuous organogenous horizons within the topsoil with documented clusters of at least 100 m. Such hypolithic horizons accumulate 0.
View Article and Find Full Text PDFSubaerial endolithic systems of the current extreme environments on Earth provide exclusive insight into emergence and development of soils in the Precambrian when due to various stresses on the surfaces of hard rocks the cryptic niches inside them were much more plausible habitats for organisms than epilithic ones. Using an actualistic approach we demonstrate that transformation of silicate rocks by endolithic organisms is one of the possible pathways for the beginning of soils on Earth. This process led to the formation of soil-like bodies on rocks in situ and contributed to the raise of complexity in subaerial geosystems.
View Article and Find Full Text PDF