Publications by authors named "Andrey Damianov"

Recently, an African ancestry-specific Parkinson disease (PD) risk signal was identified at the gene encoding glucocerebrosidase (GBA1). This variant ( rs3115534 -G) is carried by ~50% of West African PD cases and imparts a dose-dependent increase in risk for disease. The risk variant has varied frequencies across African ancestry groups but is almost absent in European and Asian ancestry populations.

View Article and Find Full Text PDF

Myelodysplastic syndromes and other cancers are often associated with mutations in the U2 snRNP protein SF3B1. Common SF3B1 mutations, including K700E, disrupt SF3B1 interaction with the protein SUGP1 and induce aberrant activation of cryptic 3' splice sites (ss), presumably resulting from aberrant U2/branch site (BS) recognition by the mutant spliceosome. Here, we apply the new method of U2 IP-seq to profile BS binding across the transcriptome of K562 leukemia cells carrying the K700E mutation.

View Article and Find Full Text PDF

Understanding the mechanisms of pre-mRNA splicing is limited by the technical challenges to examining spliceosomes in vivo. Here, we report the isolation of RNP complexes derived from precatalytic A or B-like spliceosomes solubilized from the chromatin pellet of mammalian cell nuclei. We found that these complexes contain U2 snRNP proteins and a portion of the U2 snRNA bound with protected RNA fragments that precisely map to intronic branch sites across the transcriptome.

View Article and Find Full Text PDF

Understanding the mechanisms of pre-mRNA splicing and spliceosome assembly is limited by technical challenges to examining spliceosomes in vivo. Here we report the isolation of RNP complexes derived from precatalytic A or B-like spliceosomes solubilized from the chromatin pellet of lysed nuclei. We found that these complexes contain U2 snRNP proteins and a portion of the U2 snRNA, bound with intronic branch sites prior to the first catalytic step of splicing.

View Article and Find Full Text PDF

Nuclear compartments have diverse roles in regulating gene expression, yet the molecular forces and components that drive compartment formation remain largely unclear. The long non-coding RNA Xist establishes an intra-chromosomal compartment by localizing at a high concentration in a territory spatially close to its transcription locus and binding diverse proteins to achieve X-chromosome inactivation (XCI). The XCI process therefore serves as a paradigm for understanding how RNA-mediated recruitment of various proteins induces a functional compartment.

View Article and Find Full Text PDF

Dysfunction of the neuronal RNA binding protein RBFOX1 has been linked to epilepsy and autism spectrum disorders. Rbfox1 loss in mice leads to neuronal hyper-excitability and seizures, but the physiological basis for this is unknown. We identify the vSNARE protein Vamp1 as a major Rbfox1 target.

View Article and Find Full Text PDF

Eukaryotic organelles or subcellular compartments can be selectively isolated based on their physical density and their stability in the presence of nonionic detergents. This chapter describes a protocol for the preparation of cytoplasm, nucleoplasm, and chromatin, in addition to isolation of RNA and proteins from these fractions. Proteins and protein complexes stably associated with chromatin and other high molecular weight nuclear components can be extracted under non-denaturing conditions by enzymatic digestion of RNA and DNA.

View Article and Find Full Text PDF

Proteins of the Rbfox family act with a complex of proteins called the Large Assembly of Splicing Regulators (LASR). We find that Rbfox interacts with LASR via its C-terminal domain (CTD), and this domain is essential for its splicing activity. In addition to LASR recruitment, a low-complexity (LC) sequence within the CTD contains repeated tyrosines that mediate higher-order assembly of Rbfox/LASR and are required for splicing activation by Rbfox.

View Article and Find Full Text PDF
Article Synopsis
  • A gene expression program is crucial for developing mature fat cells (adipocytes), but the role of posttranscriptional factors like the RNA-binding protein PSPC1 isn't well understood.
  • PSPC1 promotes the formation of fat cells in lab conditions and is essential for their proper function in living organisms, as it binds to important RNA sequences involved in adipocyte development.
  • Mice without PSPC1 show less fat storage and higher energy use, which helps prevent obesity and insulin resistance, highlighting the protein’s key role in regulating fat cell development post-transcriptionally.
View Article and Find Full Text PDF

Rbfox proteins control alternative splicing and posttranscriptional regulation in mammalian brain and are implicated in neurological disease. These proteins recognize the RNA sequence (U)GCAUG, but their structures and diverse roles imply a variety of protein-protein interactions. We find that nuclear Rbfox proteins are bound within a large assembly of splicing regulators (LASR), a multimeric complex containing the proteins hnRNP M, hnRNP H, hnRNP C, Matrin3, NF110/NFAR-2, NF45, and DDX5, all approximately equimolar to Rbfox.

View Article and Find Full Text PDF

The RNA-binding proteins PTBP1 and PTBP2 control programs of alternative splicing during neuronal development. PTBP2 was found to maintain embryonic splicing patterns of many synaptic and cytoskeletal proteins during differentiation of neuronal progenitor cells (NPCs) into early neurons. However, the role of the earlier PTBP1 program in embryonic stem cells (ESCs) and NPCs was not clear.

View Article and Find Full Text PDF

Human genetic studies have identified the neuronal RNA binding protein, Rbfox1, as a candidate gene for autism spectrum disorders. While Rbfox1 functions as a splicing regulator in the nucleus, it is also alternatively spliced to produce cytoplasmic isoforms. To investigate the function of cytoplasmic Rbfox1, we knocked down Rbfox proteins in mouse neurons and rescued with cytoplasmic or nuclear Rbfox1.

View Article and Find Full Text PDF

The Rbfox family of RNA binding proteins regulates alternative splicing of many important neuronal transcripts, but its role in neuronal physiology is not clear. We show here that central nervous system-specific deletion of the gene encoding Rbfox1 results in heightened susceptibility to spontaneous and kainic acid-induced seizures. Electrophysiological recording revealed a corresponding increase in neuronal excitability in the dentate gyrus of the knockout mice.

View Article and Find Full Text PDF

The Fox proteins are a family of regulators that control the alternative splicing of many exons in neurons, muscle, and other tissues. Each of the three mammalian paralogs, Fox-1 (A2BP1), Fox-2 (RBM9), and Fox-3 (HRNBP3), produces proteins with a single RNA-binding domain (RRM) flanked by N- and C-terminal domains that are highly diversified through the use of alternative promoters and alternative splicing patterns. These genes also express protein isoforms lacking the second half of the RRM (FoxDeltaRRM), due to the skipping of a highly conserved 93-nt exon.

View Article and Find Full Text PDF

The polypyrimidine tract binding protein (PTB) binds pre-mRNAs to alter splice-site choice. We characterized a series of spliceosomal complexes that assemble on a pre-mRNA under conditions of either PTB-mediated splicing repression or its absence. In the absence of repression, exon definition complexes that were assembled downstream of the regulated exon could progress to pre-spliceosomal A complexes and functional spliceosomes.

View Article and Find Full Text PDF

The spliceosome cycle consists of assembly, catalysis, and recycling phases. Recycling of postspliceosomal U4 and U6 small nuclear ribonucleoproteins (snRNPs) requires p110/SART3, a general splicing factor. In this article, we report that the zebrafish earl grey (egy) mutation maps in the p110 gene and results in a phenotype characterized by thymus hypoplasia, other organ-specific defects, and death by 7 to 8 days postfertilization.

View Article and Find Full Text PDF

The biogenesis of spliceosomal small nuclear RNAs (snRNAs) involves organized translocations between the cytoplasm and certain nuclear domains, such as Cajal bodies and nucleoli. Here we identify human RBM28 protein as a novel snRNP component, based on affinity selection of U6 small nuclear ribonucleoprotein (snRNP). As shown by immunofluorescence, RBM28 is a nucleolar protein.

View Article and Find Full Text PDF

U12-dependent introns are spliced by the so-called minor spliceosome, requiring the U11, U12, and U4atac/U6atac snRNPs in addition to the U5 snRNP. We have recently identified U6-p110 (SART3) as a novel human recycling factor that is related to the yeast splicing factor Prp24. U6-p110 transiently associates with the U6 and U4/U6 snRNPs during the spliceosome cycle, regenerating functional U4/U6 snRNPs from singular U4 and U6 snRNPs.

View Article and Find Full Text PDF

During each spliceosome cycle, the U6 snRNA undergoes extensive structural rearrangements, alternating between singular, U4-U6 and U6-U2 base-paired forms. In Saccharomyces cerevisiae, Prp24 functions as an snRNP recycling factor, reannealing U4 and U6 snRNAs. By database searching, we have identified a Prp24-related human protein previously described as p110(nrb) or SART3.

View Article and Find Full Text PDF