Publications by authors named "Andrey Chuvilin"

Electrochemical liquid phase transmission electron microscopy (EC-LPTEM) is an invaluable tool for investigating the structural and morphological properties of functional materials in electrochemical systems for energy transition. Despite its potential, standardized experimental protocols and a consensus on data interpretation are lacking, due to a variety of commercial and customized electrical and microfluidic configurations. Given the small size of a typical electrochemical cell used in these experiments, frequent electrolyte renewal is crucial to minimize local chemical alterations from reactions and radiolysis.

View Article and Find Full Text PDF

The emergence of correlated phenomena arising from the combination of 1T and 1H van der Waals layers is the focus of intense research. Here, we synthesize a self-stacked 6R phase in NbSeTe, showing perfect alternating 1T and 1H layers that grow coherently along the c-direction, as revealed by scanning transmission electron microscopy. Angle-resolved photoemission spectroscopy shows a mixed contribution of the trigonal and octahedral Nb bands to the Fermi level.

View Article and Find Full Text PDF

Liquid-phase transmission electron microscopy is a burgeoning experimental technique for monitoring nanoscale dynamics in a liquid environment, increasingly employing microfluidic reactors to control the composition of the sample solution. Current challenges comprise fast mass transport dynamics inside the central nanochannel of the liquid cell, typically flow cells, and reliable fixation of the specimen in the limited imaging area. In this work, we present a liquid cell concept - the diffusion cell - that satisfies these seemingly contradictory requirements by providing additional on-chip bypasses to allow high convective transport around the nanochannel in which diffusive transport predominates.

View Article and Find Full Text PDF

As CMOS technologies face challenges in dimensional and voltage scaling, the demand for novel logic devices has never been greater, with spin-based devices offering scaling potential, at the cost of significantly high switching energies. Alternatively, magnetoelectric materials are predicted to enable low-power magnetization control, a solution with limited device-level results. Here, we demonstrate voltage-based magnetization switching and reading in nanodevices at room temperature, enabled by exchange coupling between multiferroic BiFeO and ferromagnetic CoFe, for writing, and spin-to-charge current conversion between CoFe and Pt, for reading.

View Article and Find Full Text PDF

Electrical transport in noncentrosymmetric materials departs from the well-established phenomenological Ohm's law. Instead of a linear relation between current and electric field, a nonlinear conductivity emerges along specific crystallographic directions. This nonlinear transport is fundamentally related to the lack of spatial inversion symmetry.

View Article and Find Full Text PDF

Cu-Al-Ni is a high-temperature shape memory alloy (HTSMA) with exceptional thermomechanical properties, making it an ideal active material for engineering new technologies able to operate at temperatures up to 200 °C. Recent studies revealed that these alloys exhibit a robust superelastic behavior at the nanometer scale, making them excellent candidates for developing a new generation of micro-/nano-electromechanical systems (MEMS/NEMS). The very large-scale integration (VLSI) technologies used in microelectronics are based on thin films.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWCNTs) with their high surface area, electrical conductivity, mechanical strength and elasticity are an ideal component for the development of composite electrode materials for batteries. Red phosphorus has a very high theoretical capacity with respect to lithium, but has poor conductivity and expends considerably as a result of the reaction with lithium ions. In this work, we compare the electrochemical performance of commercial SWCNTs with red phosphorus deposited on the outer surface of nanotubes and/or encapsulated in internal channels of nanotubes in lithium-ion batteries.

View Article and Find Full Text PDF

Liquid-Phase Transmission Electron Microscopy (LP-TEM) offers the opportunity to study nanoscale dynamics of phenomena related to materials and life science in a native liquid environment and in real time. Until now, the opportunity to control/induce such dynamics by changing the chemical environment in the liquid flow cell (LFC) has rarely been exploited due to an incomplete understanding of hydrodynamic properties of LP-TEM flow systems. This manuscript introduces a method for hydrodynamic characterization of LP-TEM flow systems based on monitoring transmitted intensity while flowing a strongly electron scattering contrast agent solution.

View Article and Find Full Text PDF
Article Synopsis
  • The development of spintronic devices, like MESO logic devices, is hindered by low signal strength used for magnetization readout, highlighting the need for materials with better spin-to-charge conversion efficiency.
  • We showcase all-electrical spin-to-charge conversion in BiSe nanodevices, revealing that the efficiency can be significantly overestimated based on the metal contact used.
  • The study emphasizes that intermixing at material junctions can change properties like resistivity and spin Hall angle, and discusses strategies to enhance spin-to-charge conversion signals in these structures for practical applications.
View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWCNTs) are a perfect host for the formation of one-dimensional phosphorus structures and to obtain hybrid materials with a large P-C ratio. This work presents a procedure for high-yield phosphorus filling of commercial Tuball SWCNTs and efficient removal of phosphorus deposits from the external nanotube surface. We probed white and red phosphorus as precursors, varied the synthesis temperature and the ampoule shape, and tested three solvents for sample purification.

View Article and Find Full Text PDF

The exfoliation of layered magnetic materials generates atomically thin flakes characterized by an ultrahigh surface sensitivity, which makes their magnetic properties tunable via external stimuli, such as electrostatic gating and proximity effects. Another powerful approach to engineer magnetic materials is molecular functionalization, generating hybrid interfaces with tailored magnetic interactions, called spinterfaces. However, spinterface effects have not yet been explored on layered magnetic materials.

View Article and Find Full Text PDF

Pentagonal packing is a long-standing issue and a rich mathematical topic, brought to the fore by recent progress in nanoparticle design. Gold pentagonal bipyramids combine fivefold symmetry and anisotropy and their section varies along the length. In this work, colloidal supercrystals of pentagonal gold bipyramids are obtained in a compact arrangement that generalizes the optimal packing of regular pentagons in the plane.

View Article and Find Full Text PDF

Chiral materials are an ideal playground for exploring the relation between symmetry, relativistic effects and electronic transport. For instance, chiral organic molecules have been intensively studied to electrically generate spin-polarized currents in the last decade, but their poor electronic conductivity limits their potential for applications. Conversely, chiral inorganic materials such as tellurium have excellent electrical conductivity, but their potential for enabling the electrical control of spin polarization in devices remains unclear.

View Article and Find Full Text PDF

The spin Hall magnetoresistance (SMR) emerged as a reference tool to investigate the magnetic properties of materials with an all-electrical setup. Its sensitivity to the magnetization of thin films and surfaces may turn it into a valuable technique to characterize van der Waals magnetic materials, which support long-range magnetic order in atomically thin layers. However, realistic surfaces can be affected by defects and disorder, which may result in unexpected artifacts in the SMR, rather than the sole appearance of electrical noise.

View Article and Find Full Text PDF

In a typical colloidal synthesis, the molecules of the reducing agent are irreversibly oxidized during nanocrystal growth. Such a scenario is of questionable sustainability when confronted with naturally occurring processes in which reducing agent molecules are cyclically regenerated. Here we show that cofactor molecules once consumed in the nucleation and growth of metallic nanocrystals can be photoregenerated using metallic nanocrystals as photocatalysts and reused in the subsequent nucleation process.

View Article and Find Full Text PDF

The rational combination of plasmonic and all-dielectric concepts within hybrid nanomaterials provides a promising route toward devices with ultimate performance and extended modalities. Spectral matching of plasmonic and Mie-type resonances for such nanostructures can only be achieved for their dissimilar characteristic sizes, thus making the resulting hybrid nanostructure geometry complex for practical realization and large-scale replication. Here, we produced amorphous TiO nanospheres decorated and doped with Au nanoclusters via single-step nanosecond-laser irradiation of commercially available TiO nanopowders dispersed in aqueous HAuCl.

View Article and Find Full Text PDF

High-precision metal cutting is increasingly relevant in advanced applications. Such precision normally requires a cutting feed in the micron or even sub-micron dimension scale, which raises questions about applicability of concepts developed in industrial scale machining. To address this challenge, we have developed a device to perform linear cutting with force measurement in the vacuum chamber of an electron microscope, which has been utilised to study the cutting process down to 200 nm of the feed and the tool tip radius.

View Article and Find Full Text PDF

Spin-dependent transport at heavy metal/magnetic insulator interfaces is at the origin of many phenomena at the forefront of spintronics research. A proper quantification of the different interfacial spin conductances is crucial for many applications. Here, we report the first measurement of the spin Hall magnetoresistance (SMR) of Pt on a purely ferromagnetic insulator (EuS).

View Article and Find Full Text PDF

Magnetic nanomaterials in magnetic fields can serve as versatile transducers for remote interrogation of cell functions. In this study, we leveraged the transition from vortex to in-plane magnetization in iron oxide nanodiscs to modulate the activity of mechanosensory cells. When a vortex configuration of spins is present in magnetic nanomaterials, it enables rapid control over their magnetization direction and magnitude.

View Article and Find Full Text PDF

Enhancing magneto-optical effects is crucial for reducing the size of key photonic devices based on the non-reciprocal propagation of light and to enable active nanophotonics. Here, we disclose a currently unexplored approach that exploits hybridization with multipolar dark modes in specially designed magnetoplasmonic nanocavities to achieve a large enhancement of the magneto-optically induced modulation of light polarization. The broken geometrical symmetry of the design enables coupling with free-space light and hybridization of the multipolar dark modes of a plasmonic ring nanoresonator with the dipolar localized plasmon resonance of the ferromagnetic disk placed inside the ring.

View Article and Find Full Text PDF

Efficient and versatile spin-to-charge current conversion is crucial for the development of spintronic applications, which strongly rely on the ability to electrically generate and detect spin currents. In this context, the spin Hall effect has been widely studied in heavy metals with strong spin-orbit coupling. While the high crystal symmetry in these materials limits the conversion to the orthogonal configuration, unusual configurations are expected in low-symmetry transition-metal dichalcogenide semimetals, which could add flexibility to the electrical injection and detection of pure spin currents.

View Article and Find Full Text PDF

A ferromagnetic barrier thinner than the coherence length in high-temperature superconductors is realized in the multilayers of YBaCuO and LaCaMnO. We used epitaxial growth of YBCO on ⟨110⟩ SrTiO substrates by pulsed laser deposition to prepare thin superconducting films with copper oxide planes oriented at an angle to the substrate surface. Subsequent deposition of LCMO and finally a second YBCO layer produces a superconductor/ferromagnet/superconductor trilayer containing an ultrathin ferromagnetic barrier with sophisticated geometry at which the long axis of coherence length ovoid of YBCO is pointing across the LCMO ferromagnetic layer.

View Article and Find Full Text PDF

Atomic layer deposition is a chemical deposition technology that provides ultimate control over the conformality of films and their thickness, even down to Ångström-scale precision. Based on the marked superficial character and gas phase process of the technique, metal sources and their ligands shall ideally be highly volatile. However, in numerous cases those ligands corrode the substrate or compete for adsorption sites, well-known as side reactions of these processes.

View Article and Find Full Text PDF

We explore electrodeposited ordered arrays of Fe, Ni, and Co nanorods embedded in anodic alumina membranes as a source of intense magnetic stray field gradients localized at the nanoscale. We perform a multiscale characterization of the stray fields using a combination of experimental methods (magnetooptical Kerr effect and virtual bright field differential phase contrast imaging) and micromagnetic simulations and establish a clear correlation between the stray fields and the magnetic configurations of the nanorods. For uniformly magnetized Fe and Ni wires, the field gradients vary following saturation magnetization of the corresponding metal and the diameter of the wires.

View Article and Find Full Text PDF

The authors became aware of a mistake in the original version of this Article. Specifically, where discussing the Curie temperature of the amorphous phase, T, in the 'Thermal characterization' section of the Results and in Fig. 2, the authors should have been discussing the Curie temperature of the magnetic crystalline phases T'.

View Article and Find Full Text PDF