We theoretically demonstrate chiral propagation of plasmon polaritons and show that it is more efficient and easier to control than the recently observed chiral shear phonon polaritons. We consider plasmon polaritons created in an anisotropic two-dimensional (2D) material twisted with respect to an anisotropic substrate to best exploit the competition between anisotropic electron-electron interactions and the anisotropic electronic structure of the host material. Gate voltage and twist angle are then used for precise control of the chiral plasmon polaritons, overcoming the existing restrictions with chiral phonon polaritons.
View Article and Find Full Text PDFMicrob Pathog
August 2024
Antimicrobial resistance and biofilm formation by microbial pathogens pose a significant challenge to poultry production systems due to the persistent risk of dissemination and compromise of bird health and productivity. In this context, the study aimed to investigate the occurrence of different multiresistance phenotypes and the biofilm-forming ability of Enterobacteriaceae isolated from broiler chicken excreta in poultry production units in Ceará, Brazil. Samples were collected from three distinct broiler breeding facilities and subjected to isolation, identification, antibiotic susceptibility testing, phenotypic screening for β-lactamases enzymes, and biofilm formation evaluation.
View Article and Find Full Text PDFRes Vet Sci
April 2024
The increasing prevalence of antimicrobial resistance among bacterial pathogens necessitates novel treatment strategies, particularly in veterinary medicine where otitis in dogs is very common in small animals' clinical routines. Considering this challenge, this study explores the efficacy of aromatic plant compounds (APC), including eugenol (EUG), trans-cinnamaldehyde (TC), and geraniol (GER), and their synergistic potential when combined with the antiseptic agent chlorhexidine (CLX), offering insight into alternative therapeutic approaches. The disk diffusion assay revealed differential sensitivity of Staphylococcus spp.
View Article and Find Full Text PDFThe efficiency of light emission is a critical performance factor for monolayer transition metal dichalcogenides (1L-TMDs) for photonic applications. While various methods have been studied to compensate for lattice defects to improve the quantum yield (QY) of 1L-TMDs, exciton-exciton annihilation (EEA) is still a major nonradiative decay channel for excitons at high exciton densities. Here, we demonstrate that the combined use of a proximal Au plate and a negative electric gate bias (NEGB) for 1L-WS provides a dramatic enhancement of the exciton lifetime at high exciton densities with the corresponding QY enhanced by 30 times and the EEA rate constant decreased by 80 times.
View Article and Find Full Text PDFThe highly tunable band structure of the zero-energy Landau level (zLL) of bilayer graphene makes it an ideal platform for engineering novel quantum states. However, the zero-energy Landau level at high electric fields has remained largely unexplored. Here we present magnetotransport measurements of bilayer graphene in high transverse electric fields.
View Article and Find Full Text PDFWe explore the flatness of conduction and valence bands of interlayer excitons in MoS/WSe van der Waals heterobilayers, tuned by interlayer twist angle, pressure, and external electric field. We employ an efficient continuum model where the moiré pattern from lattice mismatch and/or twisting is represented by an equivalent mesoscopic periodic potential. We demonstrate that the mismatch moiré potential is too weak to produce significant flattening.
View Article and Find Full Text PDFVan der Waals quantum wells, naturally formed in two-dimensional layered materials with nanoscale thickness, possess many inherent advantages over conventional molecular beam epitaxy grown counterparts, and could bring up intriguing physics and applications. However, optical transitions originated from the series of quantized states in these emerging quantum wells are still elusive. Here, we show that multilayer black phosphorus appears to be an excellent candidate for van der Waals quantum wells with well-defined subbands and high optical quality.
View Article and Find Full Text PDFMonolayer transition metal dichalcogenides (1L-TMDs) have tremendous potential as atomically thin, direct bandgap semiconductors that can be used as convenient building blocks for quantum photonic devices. However, the short exciton lifetime due to the defect traps and the strong exciton-exciton interaction in TMDs has significantly limited the efficiency of exciton emission from this class of materials. Here, we show that exciton-exciton interaction in 1L-WS can be effectively screened using an ultra-flat Au film substrate separated by multilayers of hexagonal boron nitride.
View Article and Find Full Text PDFHyperbolic polaritons exhibit large photonic density of states and can be collimated in certain propagation directions. The majority of hyperbolic polaritons are sustained in man-made metamaterials. However, natural-occurring hyperbolic materials also exist.
View Article and Find Full Text PDFThe Stark effect is one of the most efficient mechanisms to manipulate many-body states in nanostructured systems. In mono- and few-layer transition metal dichalcogenides, it has been successfully induced by optical and electric field means. Here, we tune the optical emission energies and dissociate excitonic states in MoSe monolayers employing the 220 MHz in-plane piezoelectric field carried by surface acoustic waves.
View Article and Find Full Text PDFThe time evolution of a low-energy two-dimensional Gaussian wave packet in ABC-stacked n-layer graphene (ABC-NLG) is investigated. Expectation values of the position (x, y) of center-of-mass and the total probability densities of the wave packet are calculated analytically using the Green's function method. These results are confirmed using an alternative numerical method based on the split-operator technique within the Dirac approach for ABC-NLG, which additionally allows to include external fields and potentials.
View Article and Find Full Text PDFWe report the experimental observation of radiative recombination from Rydberg excitons in a two-dimensional semiconductor, monolayer WSe, encapsulated in hexagonal boron nitride. Excitonic emission up to the 4 s excited state is directly observed in photoluminescence spectroscopy in an out-of-plane magnetic field up to 31 T. We confirm the progressively larger exciton size for higher energy excited states through diamagnetic shift measurements.
View Article and Find Full Text PDFThe attraction between electrons and holes in semiconductors forms excitons, which largely determine the optical properties of the hosting material, and hence the device performance, especially for low-dimensional systems. Mono- and few-layer black phosphorus (BP) are emerging two-dimensional (2D) semiconductors. Despite its fundamental importance and technological interest, experimental investigation of exciton physics has been rather limited.
View Article and Find Full Text PDFThe ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS and WSe by hundreds of meV.
View Article and Find Full Text PDFBlack phosphorus is an infrared layered material. Its bandgap complements other widely studied two-dimensional materials: zero-gap graphene and visible/near-infrared gap transition metal dichalcogenides. Although highly desirable, a comprehensive infrared characterization is still lacking.
View Article and Find Full Text PDFIn recent years, enhanced light-matter interactions through a plethora of dipole-type polaritonic excitations have been observed in two-dimensional (2D) layered materials. In graphene, electrically tunable and highly confined plasmon-polaritons were predicted and observed, opening up opportunities for optoelectronics, bio-sensing and other mid-infrared applications. In hexagonal boron nitride, low-loss infrared-active phonon-polaritons exhibit hyperbolic behaviour for some frequencies, allowing for ray-like propagation exhibiting high quality factors and hyperlensing effects.
View Article and Find Full Text PDFThe effect of eccentricity distortions of core-multishell quantum wires on their electron, hole and exciton states is theoretically investigated. Within the effective mass approximation, the Schrödinger equation is numerically solved for electrons and holes in systems with single and double radial heterostructures, and the exciton binding energy is calculated by means of a variational approach. We show that the energy spectrum of a core-multishell heterostructure with eccentricity distortions, as well as its magnetic field dependence, are very sensitive to the direction of an externally applied electric field, an effect that can be used to identify the eccentricity of the system.
View Article and Find Full Text PDFJ Phys Condens Matter
July 2011
We investigate the dynamics of a charged particle moving in a graphene layer and in a two-dimensional electron gas, where it obeys the Dirac and the Schrödinger equations, respectively. The charge carriers are described as Gaussian wavepackets. The dynamics of the wavepackets is studied numerically by solving both quantum-mechanical and relativistic equations of motion.
View Article and Find Full Text PDF