Hydrophobic flexible zeolitic imidazole frameworks (ZIFs) represent reference microporous materials in the area of mechanical energy storage, conversion, and dissipation via non-wetting liquid intrusion-extrusion cycle. However, some of them exhibit drawbacks such as lack of stability, high intrusion pressure, or low intrusion volume that make them non-ideal materials to consider as candidates for real applications. In this work, we face these limitations by exploiting the hybrid ZIF concept.
View Article and Find Full Text PDFZeolitic Imidazolate Frameworks (ZIF) find application in storage and dissipation of mechanical energy. Their distinctive properties linked to their (sub)nanometer size and hydrophobicity allow for water intrusion only under high hydrostatic pressure. Here we focus on the popular ZIF-8 material investigating the intrusion mechanism in its nanoscale cages, which is the key to its rational exploitation in target applications.
View Article and Find Full Text PDF