Publications by authors named "Andrey Akhmatkhanov"

Light-trapping structures formed on surfaces of various materials have attracted much attention in recent years due to their important role in many applications of science and technology. This article discusses various methods for manufacturing light-trapping "black" silicon, namely laser, chemical and hybrid chemical/laser ones. In addition to the widely explored laser texturing and chemical etching methods, we develop a hybrid chemical/laser texturing method, consisting in laser post-texturing of pyramidal structures obtained after chemical etching.

View Article and Find Full Text PDF

We report the successful inactivation of strain by femtosecond infrared (IR) laser radiation at the resonant wavelengths of 3.15 μm and 6.04 μm, chosen due to the presence of characteristic molecular vibrations in the main structural elements of the bacterial cells in these spectral ranges: vibrations of amide groups in proteins (1500-1700 cm), and C-H vibrations in membrane proteins and lipids (2800-3000 cm).

View Article and Find Full Text PDF

The ultrafast interaction of tightly focused femtosecond laser pulses with bulk dielectric media in direct laser writing (inscription) regimes is known to proceed via complex multi-scale light, plasma and material modification nanopatterns, which are challenging for exploration owing to their mesoscopic, transient and buried character. In this study, we report on the first experimental demonstration, analysis and modeling of hierarchical multi-period coupled longitudinal and transverse nanogratings in bulk lithium niobate inscribed in the focal region by 1030 nm, 300 fs laser pulses in the recently proposed sub-filamentary laser inscription regime. The longitudinal Bragg-like topography nanogratings, possessing the laser-intensity-dependent periods ≈ 400 nm, consist of transverse birefringent nanogratings, which are perpendicular to the laser polarization and exhibit much smaller periods ≈ 160 nm.

View Article and Find Full Text PDF

Ferroelectric nanodomains were formed in bulk lithium niobate single crystals near nanostructured microtracks laser-inscribed by 1030-nm 0.3-ps ultrashort laser pulses at variable pulse energies in sub- and weakly filamentary laser nanopatterning regimes. The microtracks and related nanodomains were characterized by optical, scanning probe and confocal second-harmonic generation microscopy methods.

View Article and Find Full Text PDF

The inscription regimes and formation mechanisms of form-birefringent microstructures inside nano-porous fused silica by tightly focused 1030- and 515-nm ultrashort laser pulses of variable energy levels and pulsewidths in the sub-filamentary regime were explored. Energy-dispersion X-ray micro-spectroscopy and 3D scanning confocal Raman micro-spectroscopy revealed the micro-tracks compacted by the multi-shot laser exposure with the nanopores hydrodynamically driven on a microscale to their periphery. Nearly homogeneous polarimetrically acquired subwavelength-scale form-birefringence (refractive index modulation ~10) was simultaneously produced as birefringent nanogratings inside the microtracks of wavelength-, energy- and pulsewidth-dependent lengths, enabling the scaling of their total retardance for perspective phase-modulation nanophotonic applications.

View Article and Find Full Text PDF

Ferroelectric materials based on lead zirconate titanate (PZT) are widely used as sensors and actuators because of their strong piezoelectric activity. However, their application is limited because of the high processing temperature, brittleness, lack of conformal deposition, and a limited possibility to be integrated with the microelectromechanical systems (MEMS). Recent studies on the piezoelectricity in the 2-D materials have demonstrated their potential in these applications, essentially due to their flexibility and integrability with the MEMS.

View Article and Find Full Text PDF

The effects of domain wall shape instabilities and the formation of nanodomains in front of moving walls obtained in various uniaxial ferroelectrics are discussed. Special attention is paid to the formation of self-assembled nanoscale and dendrite domain structures under highly non-equilibrium switching conditions. All obtained results are considered in the framework of the unified kinetic approach to domain structure evolution based on the analogy with first-order phase transformation.

View Article and Find Full Text PDF

The chemical vapor deposition (CVD) of molybdenum disulfide (MoS2) single-layer films onto periodically poled lithium niobate is possible while maintaining the substrate polarization pattern. The MoS2 growth exhibits a preference for the ferroelectric domains polarized "up" with respect to the surface so that the MoS2 film may be templated by the substrate ferroelectric polarization pattern without the need for further lithography. MoS2 monolayers preserve the surface polarization of the "up" domains, while slightly quenching the surface polarization on the "down" domains as revealed by piezoresponse force microscopy.

View Article and Find Full Text PDF