The demand for RNA-based therapeutics is increasing globally. However, their use is hampered by the lack of safe and effective delivery vehicles. Here, we developed technologies for highly efficient delivery of RNA cargo into programmable extracellular vesicle-mimetic nanovesicles (EMNVs) by fabricating hybrid EMNV-liposomes (Hybs).
View Article and Find Full Text PDFBiomimetic nanoparticles (BMNPs) are innovative nanovehicles that replicate the properties of naturally occurring extracellular vesicles, facilitating highly efficient drug delivery across biological barriers to target organs and tissues while ensuring maximal biocompatibility and minimal-to-no toxicity. BMNPs can be utilized for the delivery of therapeutic payloads and for imparting novel properties to other nanotechnologies based on organic and inorganic materials. The application of specifically modified biological membranes for coating organic and inorganic nanoparticles has the potential to enhance their therapeutic efficacy and biocompatibility, presenting a promising pathway for the advancement of drug delivery technologies.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are natural carriers of biomolecules that play a crucial role in cell-to-cell communication and tissue homeostasis under normal and pathological conditions, including inflammatory diseases and cancer. Since the discovery of the pro-regenerative and immune-modulating properties of EVs, EV-based therapeutics have entered clinical trials for conditions such as myocardial infarction and autoimmune diseases, among others. Due to their unique advantages-such as superior bioavailability, substantial packaging capacity, and the ability to traverse biological barriers-EVs are regarded as a promising platform for targeted drug delivery.
View Article and Find Full Text PDFExtracellular vesicles (EVs), biomimetics, and other biological nanoparticles (BNs) produced from human cells are gaining increasing attention in the fields of molecular diagnostics and nanomedicine for the delivery of therapeutic cargo. In particular, BNs are considered prospective delivery vehicles for different biologics, including protein and RNA therapeutics. Moreover, EVs are widely used in molecular diagnostics for early detection of disease-associated proteins and RNA.
View Article and Find Full Text PDFThe success of DNA analytical methods, including long-read sequencing, depends on the availability of high-quality, purified DNA. Previously, we developed a method and device for isolating high-molecular-weight (HMW) DNA for long-read sequencing using a high-salt gel electroelution trap. Here, we present an improved version of this method for purifying nucleic acids with high yield and purity from even the most challenging biological samples.
View Article and Find Full Text PDFBiological nanoparticles (NPs), such as extracellular vesicles (EVs), exosome-mimetic nanovesicles (EMNVs) and nanoghosts (NGs), are perspective non-viral delivery vehicles for all types of therapeutic cargo. Biological NPs are renowned for their exceptional biocompatibility and safety, alongside their ease of functionalization, but a significant challenge arises when attempting to load therapeutic payloads, such as nucleic acids (NAs). One effective strategy involves fusing biological NPs with liposomes loaded with NAs, resulting in hybrid carriers that offer the benefits of both biological NPs and the capacity for high cargo loads.
View Article and Find Full Text PDFCancer remains a significant challenge for public healthcare systems worldwide. Within the realm of cancer treatment, considerable attention is focused on understanding the tumor microenvironment (TME)-the complex network of non-cancerous elements surrounding the tumor. Among the cells in TME, tumor-associated macrophages (TAMs) play a central role, traditionally categorized as pro-inflammatory M1 macrophages or anti-inflammatory M2 macrophages.
View Article and Find Full Text PDFCellular survival hinges on a delicate balance between accumulating damages and repair mechanisms. In this intricate equilibrium, oxidants, currently considered physiological molecules, can compromise vital cellular components, ultimately triggering cell death. On the other hand, cells possess countermeasures, such as autophagy, which degrades and recycles damaged molecules and organelles, restoring homeostasis.
View Article and Find Full Text PDFOver the past decade, in vivo gene replacement therapy has significantly advanced, resulting in market approval of numerous therapeutics predominantly relying on adeno-associated viral vectors (AAV). While viral vectors have undeniably addressed several critical healthcare challenges, their clinical application has unveiled a range of limitations and safety concerns. This review highlights the emerging challenges in the field of gene therapy.
View Article and Find Full Text PDFBackground: Riboflavin (vitamin B2) is one of the most important water-soluble vitamins and a coenzyme involved in many biochemical processes. It has previously been shown that adjuvant therapy with flavin mononucleotide (a water-soluble form of riboflavin) correlates with normalization of clinically relevant immune markers in patients with COVID-19, but the mechanism of this effect remains unclear. Here, the antiviral and anti-inflammatory effects of riboflavin were investigated to elucidate the molecular mechanisms underlying the riboflavin-induced effects.
View Article and Find Full Text PDFIntroduction: T-cell immunoglobulin and mucin domain-3 (TIM-3) is a transmembrane molecule first identified as an immunoregulator. This molecule is also expressed on leukemic cells in acute myeloid leukemia and master cell survival and proliferation. In this study, we aimed to explore the effect of TIM-3 interaction with its ligand galectin-9 (Gal-9) on glucose and lipid metabolism in AML cell lines.
View Article and Find Full Text PDFLong-read sequencing technologies require high-molecular-weight (HMW) DNA of sufficient purity and integrity, which can be difficult to obtain from complex biological samples. We propose a method for purifying HMW DNA that takes advantage of the fact that DNA's electrophoretic mobility decreases in a high-ionic-strength environment. The method begins with the separation of HMW DNA from various impurities by electrophoresis in an agarose gel-filled channel.
View Article and Find Full Text PDFReactive oxygen species (ROS) and their derivatives play a key role in signaling under normal and oxidative stress conditions in all aerobic living organisms [...
View Article and Find Full Text PDFCysteine cathepsins play an important role in tumor development and metastasis. The expression of these enzymes is often increased in many types of tumor cells. Cysteine cathepsins contribute to carcinogenesis through a number of mechanisms, including proteolysis of extracellular matrix and signaling molecules on the cell surface, as well as degradation of transcription factors and disruption of signaling cascades in the cell nucleus.
View Article and Find Full Text PDFVirus-specific proteins, including coat proteins, movement proteins, replication proteins, and suppressors of RNA interference are capable of triggering the hypersensitive response (HR), which is a type of cell death in plants. The main cell death signaling pathway involves direct interaction of HR-inducing proteins with nucleotide-binding leucine-rich repeats (NLR) proteins encoded by plant resistance genes. Singleton NLR proteins act as both sensor and helper.
View Article and Find Full Text PDFCathepsin B is a lysosomal cysteine protease, contributing to vital cellular homeostatic processes including protein turnover, macroautophagy of damaged organelles, antigen presentation, and in the extracellular space, it takes part in tissue remodeling, prohormone processing, and activation. However, aberrant overexpression of cathepsin B and its enzymatic activity is associated with different pathological conditions, including cancer. Cathepsin B overexpression in tumor tissues makes this enzyme an important target for smart delivery systems, responsive to the activity of this enzyme.
View Article and Find Full Text PDFRecent advances in RNA sequencing technologies helped uncover what was once uncharted territory in the human genome-the complex and versatile world of long noncoding RNAs (lncRNAs). Previously thought of as merely transcriptional "noise", lncRNAs have now emerged as essential regulators of gene expression networks controlling development, homeostasis and disease progression. The regulatory functions of lncRNAs are broad and diverse, and the underlying molecular mechanisms are highly variable, acting at the transcriptional, post-transcriptional, translational, and post-translational levels.
View Article and Find Full Text PDFProteolytic activity is pivotal in maintaining cell homeostasis and function. In pathological conditions such as cancer, it covers a key role in tumor cell viability, spreading to distant organs, and response to the treatment. Endosomes represent one of the major sites of cellular proteolytic activity and very often represent the final destination of internalized nanoformulations.
View Article and Find Full Text PDFMultiple factors can trigger cell death via various pathways, and nuclear proteases have emerged as essential regulators of these processes. While certain nuclear proteases have been extensively studied and their mechanisms of action are well understood, others remain poorly characterized. Regulation of nuclear protease activity is a promising therapeutic strategy that could selectively induce favorable cell death pathways in specific tissues or organs.
View Article and Find Full Text PDFBacteria are the constant companions of the human body throughout its life and even after its death. The history of a human disease such as cancer and the history of microorganisms, particularly bacteria, are believed to closely intertwined. This review was conceived to highlight the attempts of scientists from ancient times to the present day to discover the relationship between bacteria and the emergence or development of tumors in the human body.
View Article and Find Full Text PDFBackground: Leukemic cell metabolism plays significant roles in their proliferation and survival. These metabolic adaptations are under regulation by different factors. Programmed Death Ligand -1 (CD-274) is one of the immune checkpoint ligands that do not only cause the immune escape of cancer cells, but also have some intracellular effects in these cells.
View Article and Find Full Text PDFAPOBEC/AID cytidine deaminases play an important role in innate immunity and antiviral defenses and were shown to suppress hepatitis B virus (HBV) replication by deaminating and destroying the major form of HBV genome, covalently closed circular DNA (cccDNA), without toxicity to the infected cells. However, developing anti-HBV therapeutics based on APOBEC/AID is complicated by the lack of tools for activating and controlling their expression. Here, we developed a CRISPR-activation-based approach (CRISPRa) to induce APOBEC/AID transient overexpression (>4-800,000-fold increase in mRNA levels).
View Article and Find Full Text PDF