Publications by authors named "Andrey A Tregubov"

Accurate and precise drug delivery is the key to successful therapy. Monoclonal antibodies, which can transport therapeutic payload to cells expressing specific markers, have paved the way for targeted drug delivery and currently show tremendous clinical success. However, in those abundant cases, when a disease cannot be characterized by a single specific marker, more sophisticated drug delivery systems are required.

View Article and Find Full Text PDF

Background: Theranostics, a fusion of two key parts of modern medicine - diagnostics and therapy of the organism's disorders, promises to bring the efficacy of medical treatment to a fundamentally new level and to become the basis of personalized medicine. Extrapolating today's progress in the field of smart materials to the long-run prospect, we can imagine future intelligent agents capable of performing complex analysis of different physiological factors inside the living organism and implementing a built-in program thereby triggering a series of therapeutic actions. These agents, by analogy with their macroscopic counterparts, can be called nanorobots.

View Article and Find Full Text PDF

Biomolecule-driven assembly of nanoparticles is a powerful and convenient approach for development of advanced nanosensors and theranostic agents with diverse "on-demand" composition and functionality. While a lot of research is being devoted to fabrication of such agents, the development of non-invasive analytical tools to monitor self-assembly/disassembly processes in real-time substantially lags behind. Here, we demonstrate the capabilities of localized surface plasmon resonance (SPR) phenomenon to study non-covalent interactions not just between plasmonic particles, but between gold nanoparticles (AuNP) and non-plasmonic ones.

View Article and Find Full Text PDF

Pure carbon black (CB) was covalently attached to a bidentate nitrogen coordination motif with a carbon-carbon bond by spontaneous reaction with an in situ generated ligand precursor. The functionalized support was treated with [Rh(CO)2(μ-Cl)]2 to form a heterogeneous carbon-based support covalently linked to a well defined Rh(i) coordination complex. The hybrid material was characterized using X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), Infrared (IR) spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS).

View Article and Find Full Text PDF

The structural characterization of a (13)CO-labeled Ir(I) complex bearing an P,N-donor ligand (1-[2-(diphenylphosphino)ethyl]pyrazole), [Ir(PyP)((13)CO)Cl] is demonstrated using a series of tailored solid-state NMR techniques based on ultrafast (60 kHz) Magic Angle Spinning (MAS), which facilitates correlations with narrow proton line-widths. Our 1D (1)H MAS and 2D (13)C and (31)P CP-MAS NMR spectra provided structural information similar to that obtained using NMR spectroscopy in solution. We employed high-resolution 2D solid-state correlation spectroscopy ((1)H-(13)C HETCOR, (1)H-(31)P correlation) to characterize the networks of dipolar couplings between protons and carbon/phosphorus.

View Article and Find Full Text PDF

A series of N,N-donor ligands (bis(pyrazol-1-yl)methane (bpm), bis(N-methylimidazol-2-yl)methane (bim), 1-(phenylmethyl)-4-(1H-pyrazol-1-yl methyl)-1H-1,2,3-triazole (PyT)), and one N,P-donor ligand precursor (1-(3,5-dimethylpyrazol-1-yl)(2-bromoethane) (dmPyBr)) were synthesized and functionalized with aniline. Diazotization of the aniline into an aryl diazonium, using nitrous acid in aqueous conditions, was performed in situ such that the ligands could be reductively adsorbed onto glassy carbon electrode surfaces. The N,N-donor ligands (bpm, bim, PyT) were immobilized in a single step, while several steps were required to immobilize the N,P-donor ligand (dmPyP) to prevent oxidation of the phosphine group.

View Article and Find Full Text PDF