This study demonstrates that the accumulation of apoplastic phenolics is stimulated in planta in response to bacterial inoculation. Past studies have shown that levels of extracellular phenolics are elicited in plant cell suspensions in response to bacteria, and that tomato plants infected with viroids showed changes in apoplastic phenolics. The method described here monitored changes in apoplastic phenolics in tobacco leaves following bacterial inoculation of the same tissue.
View Article and Find Full Text PDFMany environmental factors, alone or combined, affect organisms by changing a pro-/antioxidant balance. Here we tested rice blast fungus (Magnaporthe oryzae) for possible cross-adaptations caused by relatively intense light and protecting from artificially formed reactive oxygen species (ROS) and ROS-dependent fungitoxic response of the host plant. Spore germination was found to be suppressed under 4-h and, to larger extent, 5-h illumination.
View Article and Find Full Text PDFIn this study, acetosyringone was identified as one of the major extracellular phenolics in tobacco suspension cells and was shown to have bioactive properties that influence early events in plant-bacterial pathogenesis. In our model system, tobacco cell suspensions treated with bacterial isolate Pseudomonas syringae WT (HR+) undergo a resistant interaction characterized by a burst in oxygen uptake several hours after inoculation. When the extracellular concentration of acetosyringone in tobacco cell suspensions was supplemented with exogenous acetosyringone, the burst in oxygen uptake occurred as much as 1.
View Article and Find Full Text PDF