Functional in a tetrameric state, the protein product of the p53 tumor suppressor gene confers its tumor-suppressive activity by transactivating genes which promote cell-cycle arrest, senescence, or programmed cell death. How p53 distinguishes between these divergent outcomes is still a matter of considerable interest. Here we discuss the impact of 2 mutations in the tetramerization domain that confer unique properties onto p53.
View Article and Find Full Text PDFDNA binding by numerous transcription factors including the p53 tumor suppressor protein constitutes a vital early step in transcriptional activation. While the role of the central core DNA binding domain (DBD) of p53 in site-specific DNA binding has been established, the contribution of the sequence-independent C-terminal domain (CTD) is still not well understood. We investigated the DNA-binding properties of a series of p53 CTD variants using a combination of in vitro biochemical analyses and in vivo binding experiments.
View Article and Find Full Text PDFThe p53 tumor suppressor interacts with its negative regulator Mdm2 via the former's N-terminal region and core domain, yet the extreme p53 C-terminal region contains lysine residues ubiquitinated by Mdm2 and can bear post-translational modifications that inhibit Mdm2-p53 association. We show that the Mdm2-p53 interaction is decreased upon deletion, mutation or acetylation of the p53 C terminus. Mdm2 decreases the association of full-length but not C-terminally deleted p53 with a DNA target sequence in vitro and in cells.
View Article and Find Full Text PDFBoth sequence-specific DNA binding and exonuclease activities have been mapped to the central conserved core domain of p53. To gain more information about these two activities a series of mutants were generated that changed core domain histidine residues. Of these mutants, only one, H115N p53, showed markedly reduced exonuclease activity (ca.
View Article and Find Full Text PDFThe tumor suppressor p53 is activated in response to many forms of cellular stress leading to cell cycle arrest, senescence or apoptosis. Appropriate sub-cellular localization is essential for modulating p53 function. We recently showed that p53 localizes to the nucleolus after proteasome inhibition with MG132 and this localization requires sequences within its carboxyl terminus.
View Article and Find Full Text PDFThe p53 tumor suppressor gene acquires missense mutations in over 50% of human cancers, and most of these mutations occur within the central core DNA binding domain. One structurally defined region of the core, the L1 loop (residues 112-124), is a mutational "cold spot" in which relatively few tumor-derived mutations have been identified. To further understand the L1 loop, we subjected this region to both alanine- and arginine-scanning mutagenesis and tested mutants for DNA binding in vitro.
View Article and Find Full Text PDF