Methane emissions from the oil and gas sector are a large contributor to climate change. Robust emission quantification and source attribution are needed for mitigating methane emissions, requiring a transparent, comprehensive, and accurate geospatial database of oil and gas infrastructure. Realizing such a database is hindered by data gaps nationally and globally.
View Article and Find Full Text PDFLow-yield repetitive laboratory diagnostics burden patients and inflate cost of care. In this study, we assess whether stability in repeated laboratory diagnostic measurements is predictable with uncertainty estimates using electronic health record data available before the diagnostic is ordered. We use probabilistic regression to predict a distribution of plausible values, allowing use-time customization for various definitions of "stability" given dynamic ranges and clinical scenarios.
View Article and Find Full Text PDFPac Symp Biocomput
January 2024
Lack of diagnosis coding is a barrier to leveraging veterinary notes for medical and public health research. Previous work is limited to develop specialized rule-based or customized supervised learning models to predict diagnosis coding, which is tedious and not easily transferable. In this work, we show that open-source large language models (LLMs) pretrained on general corpus can achieve reasonable performance in a zero-shot setting.
View Article and Find Full Text PDFArtificial intelligence (AI) models for automatic generation of narrative radiology reports from images have the potential to enhance efficiency and reduce the workload of radiologists. However, evaluating the correctness of these reports requires metrics that can capture clinically pertinent differences. In this study, we investigate the alignment between automated metrics and radiologists' scoring of errors in report generation.
View Article and Find Full Text PDFIn tasks involving the interpretation of medical images, suitably trained machine-learning models often exceed the performance of medical experts. Yet such a high-level of performance typically requires that the models be trained with relevant datasets that have been painstakingly annotated by experts. Here we show that a self-supervised model trained on chest X-ray images that lack explicit annotations performs pathology-classification tasks with accuracies comparable to those of radiologists.
View Article and Find Full Text PDFObjective: Chest pain is common, and current risk-stratification methods, requiring 12-lead electrocardiograms (ECGs) and serial biomarker assays, are static and restricted to highly resourced settings. Our objective was to predict myocardial injury using continuous single-lead ECG waveforms similar to those obtained from wearable devices and to evaluate the potential of transfer learning from labeled 12-lead ECGs to improve these predictions.
Methods: We studied 10 874 Emergency Department (ED) patients who received continuous ECG monitoring and troponin testing from 2020 to 2021.
Data labeling is often the limiting step in machine learning because it requires time from trained experts. To address the limitation on labeled data, contrastive learning, among other unsupervised learning methods, leverages unlabeled data to learn representations of data. Here, we propose a contrastive learning framework that utilizes metadata for selecting positive and negative pairs when training on unlabeled data.
View Article and Find Full Text PDFPurpose: Patients with pneumonia often present to the emergency department (ED) and require prompt diagnosis and treatment. Clinical decision support systems for the diagnosis and management of pneumonia are commonly utilized in EDs to improve patient care. The purpose of this study is to investigate whether a deep learning model for detecting radiographic pneumonia and pleural effusions can improve functionality of a clinical decision support system (CDSS) for pneumonia management (ePNa) operating in 20 EDs.
View Article and Find Full Text PDFBackground: Respiratory virus infections are significant causes of morbidity and mortality, and may induce host metabolite alterations by infecting respiratory epithelial cells. We investigated the use of liquid chromatography quadrupole time-of-flight mass spectrometry (LC/Q-TOF) combined with machine learning for the diagnosis of influenza infection.
Methods: We analyzed nasopharyngeal swab samples by LC/Q-TOF to identify distinct metabolic signatures for diagnosis of acute illness.
Importance: Physicians are required to work with rapidly growing amounts of medical data. Approximately 62% of time per patient is devoted to reviewing electronic health records (EHRs), with clinical data review being the most time-consuming portion.
Objective: To determine whether an artificial intelligence (AI) system developed to organize and display new patient referral records would improve a clinician's ability to extract patient information compared with the current standard of care.
Coronary artery disease (CAD), the most common manifestation of cardiovascular disease, remains the most common cause of mortality in the United States. Risk assessment is key for primary prevention of coronary events and coronary artery calcium (CAC) scoring using computed tomography (CT) is one such non-invasive tool. Despite the proven clinical value of CAC, the current clinical practice implementation for CAC has limitations such as the lack of insurance coverage for the test, need for capital-intensive CT machines, specialized imaging protocols, and accredited 3D imaging labs for analysis (including personnel and software).
View Article and Find Full Text PDFDiffuse Large B-Cell Lymphoma (DLBCL) is the most common non-Hodgkin lymphoma. Though histologically DLBCL shows varying morphologies, no morphologic features have been consistently demonstrated to correlate with prognosis. We present a morphologic analysis of histology sections from 209 DLBCL cases with associated clinical and cytogenetic data.
View Article and Find Full Text PDFTuberculosis (TB) is the leading cause of preventable death in HIV-positive patients, and yet often remains undiagnosed and untreated. Chest x-ray is often used to assist in diagnosis, yet this presents additional challenges due to atypical radiographic presentation and radiologist shortages in regions where co-infection is most common. We developed a deep learning algorithm to diagnose TB using clinical information and chest x-ray images from 677 HIV-positive patients with suspected TB from two hospitals in South Africa.
View Article and Find Full Text PDFBackground: Risk adjustment models are employed to prevent adverse selection, anticipate budgetary reserve needs, and offer care management services to high-risk individuals. We aimed to address two unknowns about risk adjustment: whether machine learning (ML) and inclusion of social determinants of health (SDH) indicators improve prospective risk adjustment for health plan payments.
Methods: We employed a 2-by-2 factorial design comparing: (i) linear regression versus ML (gradient boosting) and (ii) demographics and diagnostic codes alone, versus additional ZIP code-level SDH indicators.
Pulmonary embolism (PE) is a life-threatening clinical problem and computed tomography pulmonary angiography (CTPA) is the gold standard for diagnosis. Prompt diagnosis and immediate treatment are critical to avoid high morbidity and mortality rates, yet PE remains among the diagnoses most frequently missed or delayed. In this study, we developed a deep learning model-PENet, to automatically detect PE on volumetric CTPA scans as an end-to-end solution for this purpose.
View Article and Find Full Text PDFArtificial intelligence (AI) algorithms continue to rival human performance on a variety of clinical tasks, while their actual impact on human diagnosticians, when incorporated into clinical workflows, remains relatively unexplored. In this study, we developed a deep learning-based assistant to help pathologists differentiate between two subtypes of primary liver cancer, hepatocellular carcinoma and cholangiocarcinoma, on hematoxylin and eosin-stained whole-slide images (WSI), and evaluated its effect on the diagnostic performance of 11 pathologists with varying levels of expertise. Our model achieved accuracies of 0.
View Article and Find Full Text PDFThe development of deep learning algorithms for complex tasks in digital medicine has relied on the availability of large labeled training datasets, usually containing hundreds of thousands of examples. The purpose of this study was to develop a 3D deep learning model, AppendiXNet, to detect appendicitis, one of the most common life-threatening abdominal emergencies, using a small training dataset of less than 500 training CT exams. We explored whether pretraining the model on a large collection of natural videos would improve the performance of the model over training the model from scratch.
View Article and Find Full Text PDFImportance: Deep learning has the potential to augment clinician performance in medical imaging interpretation and reduce time to diagnosis through automated segmentation. Few studies to date have explored this topic.
Objective: To develop and apply a neural network segmentation model (the HeadXNet model) capable of generating precise voxel-by-voxel predictions of intracranial aneurysms on head computed tomographic angiography (CTA) imaging to augment clinicians' intracranial aneurysm diagnostic performance.
Circ Cardiovasc Qual Outcomes
March 2019
Background: The absolute risk reduction (ARR) in cardiovascular events from therapy is generally assumed to be proportional to baseline risk-such that high-risk patients benefit most. Yet newer analyses have proposed using randomized trial data to develop models that estimate individual treatment effects. We tested 2 hypotheses: first, that models of individual treatment effects would reveal that benefit from intensive blood pressure therapy is proportional to baseline risk; and second, that a machine learning approach designed to predict heterogeneous treatment effects-the X-learner meta-algorithm-is equivalent to a conventional logistic regression approach.
View Article and Find Full Text PDFIn the version of this article originally published, the x axis labels in Fig. 1a were incorrect. The labels originally were 'Specificity,' but should have been '1 - Specificity.
View Article and Find Full Text PDFComputerized electrocardiogram (ECG) interpretation plays a critical role in the clinical ECG workflow. Widely available digital ECG data and the algorithmic paradigm of deep learning present an opportunity to substantially improve the accuracy and scalability of automated ECG analysis. However, a comprehensive evaluation of an end-to-end deep learning approach for ECG analysis across a wide variety of diagnostic classes has not been previously reported.
View Article and Find Full Text PDFBackground: Magnetic resonance imaging (MRI) of the knee is the preferred method for diagnosing knee injuries. However, interpretation of knee MRI is time-intensive and subject to diagnostic error and variability. An automated system for interpreting knee MRI could prioritize high-risk patients and assist clinicians in making diagnoses.
View Article and Find Full Text PDFOsteoclasts are bone-resorbing cells differentiated from macrophage/monocyte precursors in response to macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). models are principally based on primary bone marrow macrophages (BMMs), but RAW 264.7 cells are frequently used because they are widely available, easy to culture, and more amenable to genetic manipulation than primary cells.
View Article and Find Full Text PDFBackground: Chest radiograph interpretation is critical for the detection of thoracic diseases, including tuberculosis and lung cancer, which affect millions of people worldwide each year. This time-consuming task typically requires expert radiologists to read the images, leading to fatigue-based diagnostic error and lack of diagnostic expertise in areas of the world where radiologists are not available. Recently, deep learning approaches have been able to achieve expert-level performance in medical image interpretation tasks, powered by large network architectures and fueled by the emergence of large labeled datasets.
View Article and Find Full Text PDF