Atomically thin semiconductor heterostructures provide a two-dimensional (2D) device platform for creating high densities of cold, controllable excitons. Interlayer excitons (IEs), bound electrons and holes localized to separate 2D quantum well layers, have permanent out-of-plane dipole moments and long lifetimes, allowing their spatial distribution to be tuned on demand. Here, we employ electrostatic gates to trap IEs and control their density.
View Article and Find Full Text PDFEmploying flux-grown single crystal WSe_{2}, we report charge-carrier scattering behaviors measured in h-BN encapsulated monolayer field effect transistors. We observe a nonmonotonic change of transport mobility as a function of hole density in the degenerately doped sample, which can be explained by energy dependent scattering amplitude of strong defects calculated using the T-matrix approximation. Utilizing long mean-free path (>500 nm), we also demonstrate the high quality of our electronic devices by showing quantized conductance steps from an electrostatically defined quantum point contact, showing the potential for creating ultrahigh quality quantum optoelectronic devices based on atomically thin semiconductors.
View Article and Find Full Text PDFCoupled two-dimensional electron-hole bilayers provide a unique platform to study strongly correlated Bose-Fermi mixtures in condensed matter. Electrons and holes in spatially separated layers can bind to form interlayer excitons, composite Bosons expected to support high-temperature exciton condensates. The interlayer excitons can also interact strongly with excess charge carriers when electron and hole densities are unequal.
View Article and Find Full Text PDFUltrafast charge transfer processes provide a facile way to create interlayer excitons in directly contacted transition metal dichalcogenide (TMD) layers. More sophisticated heterostructures composed of TMD/hBN/TMD enable new ways to control interlayer exciton properties and achieve novel exciton phenomena, such as exciton insulators and condensates, where longer lifetimes are desired. In this work, we experimentally study the charge transfer dynamics in a heterostructure composed of a 1 nm thick hBN spacer between MoSe and WSe monolayers.
View Article and Find Full Text PDFTechniques to mold the flow of light on subwavelength scales enable fundamentally new optical systems and device applications. The realization of programmable, active optical systems with fast, tunable components is among the outstanding challenges in the field. Here, we experimentally demonstrate a few-pixel beam steering device based on electrostatic gate control of excitons in an atomically thin semiconductor with strong light-matter interactions.
View Article and Find Full Text PDFMoiré superlattices in twisted van der Waals materials have recently emerged as a promising platform for engineering electronic and optical properties. A major obstacle to fully understanding these systems and harnessing their potential is the limited ability to correlate direct imaging of the moiré structure with optical and electronic properties. Here we develop a secondary electron microscope technique to directly image stacking domains in fully functional van der Waals heterostructure devices.
View Article and Find Full Text PDFThe twist degree of freedom provides a powerful new tool for engineering the electrical and optical properties of van der Waals heterostructures. Here, we show that the twist angle can be used to control the spin-valley properties of transition metal dichalcogenide bilayers by changing the momentum alignment of the valleys in the two layers. Specifically, we observe that the interlayer excitons in twisted WSe_{2}/WSe_{2} bilayers exhibit a high (>60%) degree of circular polarization (DOCP) and long valley lifetimes (>40 ns) at zero electric and magnetic fields.
View Article and Find Full Text PDFTuning electrical conductivity of semiconducting materials through substitutional doping is crucial for fabricating functional devices. This, however, has not been fully realized in two-dimensional (2D) materials due to the difficulty of homogeneously controlling the dopant concentrations and the lack of systematic study of the net impact of substitutional dopants separate from that of the unintentional doping from the device fabrication processes. Here, we grow wafer-scale, continuous MoS monolayers with tunable concentrations of Nb and Re and fabricate devices using a polymer-free approach to study the direct electrical impact of substitutional dopants in MoS monolayers.
View Article and Find Full Text PDFWe demonstrate a new approach for dynamically manipulating the optical response of an atomically thin semiconductor, a monolayer of MoSe_{2}, by suspending it over a metallic mirror. First, we show that suspended van der Waals heterostructures incorporating a MoSe_{2} monolayer host spatially homogeneous, lifetime-broadened excitons. Then, we interface this nearly ideal excitonic system with a metallic mirror and demonstrate control over the exciton-photon coupling.
View Article and Find Full Text PDFA van der Waals heterostructure built from atomically thin semiconducting transition metal dichalcogenides (TMDs) enables the formation of excitons from electrons and holes in distinct layers, producing interlayer excitons with large binding energy and a long lifetime. By employing heterostructures of monolayer TMDs, we realize optical and electrical generation of long-lived neutral and charged interlayer excitons. We demonstrate that neutral interlayer excitons can propagate across the entire sample and that their propagation can be controlled by excitation power and gate electrodes.
View Article and Find Full Text PDFTransition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin-orbit coupling and spin-valley degrees of freedom. Depending on the spin configuration of the electron-hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark. Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment, making their detection with conventional far-field optical techniques challenging.
View Article and Find Full Text PDFWe study the impact of electrode band structure on transport through single-molecule junctions by measuring the conductance of pyridine-based molecules using Ag and Au electrodes. Our experiments are carried out using the scanning tunneling microscope based break-junction technique and are supported by density functional theory based calculations. We find from both experiments and calculations that the coupling of the dominant transport orbital to the metal is stronger for Au-based junctions when compared with Ag-based junctions.
View Article and Find Full Text PDF