Publications by authors named "Andrew Willetts"

A Special Issue of devoted to 'Microbial Biocatalysis and Biodegradation' would be incomplete without some form of acknowledgement of the many important roles that dioxygen-dependent enzymes (principally mono- and dioxygenases) play in relevant aspects of bio-oxygenation. This is reflected by the multiple strategic roles that dioxygen -dependent microbial enzymes play both in generating valuable synthons for chemoenzymatic synthesis and in facilitating reactions that help to drive the global geochemical carbon cycle. A useful insight into this can be gained by reviewing the evolution of the current status of 2,5-diketocamphane 1,2-monooxygenase (EC 1.

View Article and Find Full Text PDF

The role of cofactor recycling in determining the efficiency of artificial biocatalytic cascades has become paramount in recent years. Closed-loop cofactor recycling, which initially emerged in the 1990s, has made a valuable contribution to the development of this aspect of biotechnology. However, the evolution of redox-neutral closed-loop cofactor recycling has a longer history that has been integrally linked to the enzymology of oxy-functionalised bicyclo[3.

View Article and Find Full Text PDF

Using highly purified enzyme preparations throughout, initial kinetic studies demonstrated that the isoenzymic 2,5- and 3,6-diketocamphane mono-oxygenases from ATCC 17453 and the LuxAB luciferase from ATCC 7744 exhibit commonality in being FMN-dependent two-component monooxygenases that promote redox coupling by the transfer of flavin reductase-generated FMNH by rapid free diffusion. Subsequent studies confirmed the comprehensive inter-species compatibility of both native and non-native flavin reductases with each of the tested monooxygenases. For all three monooxygenases, non-native flavin reductases from ATCC 11105 and ATCC 29600 were confirmed to be more efficient donators of FMNH than the corresponding tested native flavin reductases.

View Article and Find Full Text PDF

Researching the involvement of molecular oxygen in the degradation of the naturally occurring bicyclic terpene camphor has generated a six-decade history of fascinating monooxygenase biochemistry. While an extensive bibliography exists reporting the many varied studies on camphor 5-monooxygenase, the initiating enzyme of the relevant catabolic pathway in ATCC 17453, the equivalent recorded history of the isoenzymic diketocamphane monooxygenases, the enzymes that facilitate the initial ring cleavage of the bicyclic terpene, is both less extensive and more enigmatic. First referred to as 'ketolactonase-an enzyme for cyclic lactonization'-the enzyme now classified as 2,5-diketocamphane 1,2-monooxygenase (EC 1.

View Article and Find Full Text PDF

The relative importance of camphor (CAM) plasmid-coded putidaredoxin reductase (PdR) and the chromosome-coded flavin reductases Frp1, Frp2 and Fred for supplying reduced FMN (FNR) to the enantiocomplementary 2,5- and 3,6-diketocamphane monooxygenases (DKCMOs) that are essential for the growth of ATCC 17453 on ()-camphor was examined. By undertaking studies in the time window prior to the induction of Fred, and selectively inhibiting Frp1 and 2 with Zn, it was confirmed that PdR could serve as the sole active supplier of FNR to the DKCMOs. This establishes for the first time that the CAM plasmid can function as an autonomous extrachromosomal genetic element able to express all the enzymes and redox factors necessary to ensure entry of the C10 bicyclic terpene into the central pathways of metabolism via isobutyryl-CoA.

View Article and Find Full Text PDF

The CAM plasmid-coded isoenzymic diketocamphane monooxygenases induced in ATCC 17453 (NCIMB 10007) by growth of the bacterium on the bicyclic monoterpene ()-camphor are notable both for their interesting history, and their strategic importance in chemoenzymatic syntheses. Originally named 'ketolactonase-an enzyme system for cyclic lactonization' because of its characterised mode of action, (+)-camphor-induced 2,5-diketocamphane 1,2-monooxygenase was the first example of a Baeyer-Villiger monooxygenase activity to be confirmed in vitro. Both this enzyme and the enantiocomplementary (-)-camphor-induced 3,6-diketocamphane 1,6-monooxygenase were mistakenly classified and studied as coenzyme-containing flavoproteins for nearly 40 years before being correctly recognised and reinvestigated as FMN-dependent two-component monooxygenases.

View Article and Find Full Text PDF

For the first time, the differential rates of synthesis of all the key monooxygenases involved in the catabolism by NCIMB 10007 of bicyclic ()-camphor to ∆-3,4,4-trimethylpimelyl-CoA, the first aliphatic pathway intermediate, have been determined to help establish the relevant induction profile of each of the oxygen-dependent enzymes. The efficacy of both relevant substrates and pathway metabolites as inducers has been established. Further, inhibitors with characterised functionality have been used to indicate that the pertinent regulatory controls operate at the level of transcription of the corresponding genes.

View Article and Find Full Text PDF

A classical all-atom force field has been developed for 2,4,6-trinitroethylbenzene and 2,4-dinitroethylbenzene and applied in molecular dynamics simulations of the two pure and two mixed plasticizer systems. Bonding parameters and partial charges were derived through electronic and geometry optimization of the single molecules. The other required parameters were derived from values already available in the literature for generic nitro aromatic compounds, which were adjusted to reproduce to a high level of accuracy the densities of 2,4-dinitroethylbenzene, 2,4,6-trinitroethylbenzene and the energetic plasticizers K10 and R8002.

View Article and Find Full Text PDF

I thank Drs. Littlechild and Isupov for their recent comments, which are considered below. Before addressing these specifically, their correspondence raises two more general issues which require initial clarification.

View Article and Find Full Text PDF

The progressive titres of key monooxygenases and their requisite native donors of reducing power were used to assess the relative contribution of various camphor plasmid (CAM plasmid)- and chromosome-coded activities to biodegradation of ()-camphor at successive stages throughout growth of NCIMB 10007 on the bicylic monoterpenoid. A number of different flavin reductases (FRs) have the potential to supply reduced flavin mononucleotide to both 2,5- and 3,6-diketocamphane monooxygenase, the key isoenzymic two-component monooxygenases that delineate respectively the (+)- and (-)-camphor branches of the convergent degradation pathway. Two different constitutive chromosome-coded ferric reductases able to act as FRs can serve such as role throughout all stages of camphor-dependent growth, whereas Fred, a chromosome-coded inducible FR can only play a potentially significant role in the relatively late stages.

View Article and Find Full Text PDF

Although they have been studied for nearly 50 years, the source of the FMNH2 needed for effective biooxidation by the 2,5- and 3,6-diketocamphane monooxygenase (DKCMO) isoenzymes induced by the growth of Pseudomonas putida NCIMB 10007 (ATCC 17453) on camphor remains incompletely characterized. Prior studies have focussed exclusively on enzymes present in cells harvested during late-exponential-phase growth despite considerable circumstantial evidence that the flavin reductase (FR) component of these multicomponent monooxygenases is subject to growth-phase-dependent variation. In this study, a number of alternative FMNH2-generating activities, including both conventional FRs and enzymes also able to serve as ferric reductases, were isolated from camphor-grown cells, and the relative level, and hence potential contribution, of these various proteins shown to vary considerably depending on the point of harvest of NCIMB 10007 within exponential-phase growth.

View Article and Find Full Text PDF

The major limitation in the synthetic application of two-component Baeyer-Villiger monooxygenases was addressed by identifying the 28-kDa flavin-reductase Fre from Escherichia coli as a suitable supplier of reduced FMN for these enzymes. Coexpression of Fre with either 2,5- or 3,6-diketocamphane monooxygenase from Pseudomonas putida NCIMB 10007 significantly enhanced the conversion of camphor and norcamphor serving as representative ketones. With purified enzymes, full conversion was achieved, while only slight amounts of product were formed in the absence of this flavin reductase.

View Article and Find Full Text PDF

A collection of marine bacteria isolated from a temperate coastal zone has been screened in a programme of biodiscovery. A total of 34 enzymes with biotechnological potential were screened in 374 isolates of marine bacteria. Only two enzymes were found in all isolates while the majority of enzyme activities were present in a smaller proportion of the isolates.

View Article and Find Full Text PDF

A novel type of Baeyer-Villiger monooxygenase (BVMO) has been found in a marine strain of Stenotrophomonas maltophila strain PML168 that was isolated from a temperate intertidal zone. The enzyme is able to use NADH as the source of reducing power necessary to accept the atom of diatomic oxygen not incorporated into the oxyfunctionalized substrate. Growth studies have establish that the enzyme is inducible, appears to serve a catabolic role, and is specifically induced by one or more unidentified components of seawater as well as various anthropogenic xenobiotic compounds.

View Article and Find Full Text PDF

A vanadium-containing bromoperoxidase (VBrPO) from the alga Corallina officinalis has been shown to catalyze the stereoselective oxidation of some aromatic bicyclic sulfides to the corresponding (S)-sulfoxides in high (up to 91%) ee. Hydrogen peroxide was found to have a large effect on the catalyzed reaction, most likely due to an inhibition of VBrPO. High optical and chemical yields were found to be favored by a continuous slow addition of hydrogen peroxide to keep a low excess.

View Article and Find Full Text PDF