Publications by authors named "Andrew Wikenheiser"

Orbitofrontal cortex (OFC) and secondary motor cortex (M2) are both implicated in flexible reward learning but the conditions that differentially recruit these regions are not fully understood. We imaged calcium activity from single neurons in OFC or M2 during learning of uncertain reward probability schedules. After controlling for experience, predictions of choice were decoded from M2 neurons with similar accuracy under all certainty conditions, but were more accurately decoded from OFC neurons under greater uncertainty.

View Article and Find Full Text PDF
Article Synopsis
  • Maladaptive decision-making is common in substance use disorders (SUDs), but the effects of drugs on brain processes related to decision-making are not fully understood.
  • Past research typically focused on individual neuron activity, but this study emphasizes the need to analyze groups of neurons (ensembles) for a clearer picture.
  • The findings reveal that cocaine use weakened and changed the brain's representations of important information for decision-making, potentially leading to poor choices, providing insights that could improve future treatment approaches for SUDs.
View Article and Find Full Text PDF

Dopamine release in the nucleus accumbens core (NAcC) is generally considered to be a proxy for phasic firing of the ventral tegmental area dopamine (VTA) neurons. Thus, dopamine release in NAcC is hypothesized to reflect a unitary role in reward prediction error signaling. However, recent studies reveal more diverse roles of dopamine neurons, which support an emerging idea that dopamine regulates learning differently in distinct circuits.

View Article and Find Full Text PDF

The ubiquity, importance, and sophistication of foraging behavior makes it an ideal platform for studying naturalistic decision making in animals. We developed a spatial patch-foraging task for rats, in which subjects chose how long to remain in one foraging patch as the rate of food earnings steadily decreased. The cost of seeking out a new location was varied across sessions.

View Article and Find Full Text PDF

Flexible reward learning relies on frontal cortex, with substantial evidence indicating that anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC) subregions play important roles. Recent studies in both rat and macaque suggest theta oscillations (5-10 Hz) may be a spectral signature that coordinates this learning. However, network-level interactions between ACC and OFC in flexible learning remain unclear.

View Article and Find Full Text PDF

The ubiquity, importance, and sophistication of foraging behavior makes it an ideal platform for studying naturalistic decision making in animals. We developed a spatial patch-foraging task for rats, in which subjects chose how long to remain in one foraging patch as the rate of food earnings steadily decreased. The cost of seeking out a new location was varied across sessions.

View Article and Find Full Text PDF

Since the discovery of conspicuously spatially tuned neurons in the hippocampal formation over 50 years ago, characterizing which, where, and how neurons encode navigationally relevant variables has been a major thrust of navigational neuroscience. While much of this effort has centered on the hippocampal formation and functionally-adjacent structures, recent work suggests that spatial codes, in some form or another, can be found throughout the brain, even in areas traditionally associated with sensation, movement, and executive function. In this review, we highlight these unexpected results, draw insights from comparison of these codes across contexts, regions, and species, and finally suggest an avenue for future work to make sense of these diverse and dynamic navigational codes.

View Article and Find Full Text PDF

Theoretical models of foraging are based on the maximization of food intake rate. Remarkably, foragers often hew close to the predictions of rate maximization, except for a frequently observed bias to remain in patches for too long. By sticking with depleting options beyond the optimal patch residence time-a phenomenon referred to as overharvesting or overstaying-foragers miss out on food they could have earned had they sought a new option elsewhere.

View Article and Find Full Text PDF

The orbitofrontal cortex (OFC) and hippocampus share striking cognitive and functional similarities. As a result, both structures have been proposed to encode "cognitive maps" that provide useful scaffolds for planning complex behaviors. However, while this function has been exemplified by spatial coding in neurons of hippocampal regions-particularly place and grid cells-spatial representations in the OFC have been investigated far less.

View Article and Find Full Text PDF

Adaptive reward-related decision making often requires accurate and detailed representation of potential available rewards. Environmental reward-predictive stimuli can facilitate these representations, allowing one to infer which specific rewards might be available and choose accordingly. This process relies on encoded relationships between the cues and the sensory-specific details of the rewards they predict.

View Article and Find Full Text PDF

Substance use disorders (SUDs) are characterized by maladaptive behavior. The ability to properly adjust behavior according to changes in environmental contingencies necessitates the interlacing of existing memories with updated information. This can be achieved by assigning learning in different contexts to compartmentalized "states.

View Article and Find Full Text PDF

The orbitofrontal cortex (OFC) is proposed to be critical to economic decision making. Yet one can inactivate OFC without affecting well-practiced choices. One possible explanation of this lack of effect is that well-practiced decisions are codified into habits or configural-based policies not normally thought to require OFC.

View Article and Find Full Text PDF

Confidence in perceptual decisions scales neural responses to violations in reward expectation. In this issue of Neuron, Lak et al. (2020) show that the medial prefrontal cortex in mice computes a confidence-dependent expectation signal that influences how dopamine neurons convey reward prediction errors to guide learning.

View Article and Find Full Text PDF

Both hippocampus (HPC) and orbitofrontal cortex (OFC) have been shown to be critical for behavioral tasks that require use of an internal model or cognitive map, composed of the states and the relationships between them, which define the current environment or task at hand. One general idea is that the HPC provides the cognitive map, which is then transformed by OFC to emphasize information of relevance to current goals. Our previous analysis of ensemble activity in OFC in rats performing an odor sequence task revealed a rich representation of behaviorally relevant task structure, consistent with this proposal.

View Article and Find Full Text PDF

The orbitofrontal cortex (OFC) has long been implicated in signaling information about expected outcomes to facilitate adaptive or flexible behavior. Current proposals focus on signaling of expected value versus the representation of a value-agnostic cognitive map of the task. While often suggested as mutually exclusive, these alternatives may represent extreme ends of a continuum determined by task complexity and experience.

View Article and Find Full Text PDF

The hippocampus and orbitofrontal cortex (OFC) both make important contributions to decision making and other cognitive processes. However, despite anatomical links between the two, few studies have tested the importance of hippocampal-OFC interactions. Here, we recorded OFC neurons in rats performing a decision making task while suppressing activity in a key hippocampal output region, the ventral subiculum.

View Article and Find Full Text PDF

In this issue of Neuron, Murakami et al. (2017) relate neural activity in frontal cortex to stochastic and deterministic components of waiting behavior in rats; they find that mPFC biases waiting time, while M2 is ultimately responsible for trial-to-trial variability in decisions about how long to wait.

View Article and Find Full Text PDF

The hippocampus and the orbitofrontal cortex (OFC) both have important roles in cognitive processes such as learning, memory and decision making. Nevertheless, research on the OFC and hippocampus has proceeded largely independently, and little consideration has been given to the importance of interactions between these structures. Here, evidence is reviewed that the hippocampus and OFC encode parallel, but interactive, cognitive 'maps' that capture complex relationships between cues, actions, outcomes and other features of the environment.

View Article and Find Full Text PDF

To adaptively respond in a complex, changing world, animals need to flexibly update their understanding of the world when their expectations are violated. Though several brain regions in rodents and primates have been implicated in aspects of this updating, current models of orbitofrontal cortex (OFC) and norepinephrine neurons of the locus coeruleus (LC-NE) suggest that each plays a role in responding to environmental change, where the OFC allows updating of prior learning to occur without overwriting or unlearning one's previous understanding of the world that changed, while elevated tonic NE allows for increased flexibility in behavior that tracks an animal's uncertainty. In light of recent studies highlighting a specific LC-NE projection to the OFC, in this review we discuss current models of OFC and NE function, and their potential synergy in the updating of associations following environmental change.

View Article and Find Full Text PDF

State representation is fundamental to behavior. However, identifying the true state of the world is challenging when explicit cues are ambiguous. Here, Bradfield and colleagues show that the medial OFC is critical for using associative information to discriminate ambiguous states.

View Article and Find Full Text PDF

Hippocampal information processing is discretized by oscillations, and the ensemble activity of place cells is organized into temporal sequences bounded by theta cycles. Theta sequences represent time-compressed trajectories through space. Their forward-directed nature makes them an intuitive candidate mechanism for planning future trajectories, but their connection to goal-directed behavior remains unclear.

View Article and Find Full Text PDF

Tolman proposed that complex animal behavior is mediated by the cognitive map, an integrative learning system that allows animals to reconfigure previous experience in order to compute predictions about the future. The discovery of place cells in the rodent hippocampus immediately suggested a plausible neural mechanism to fulfill the 'map' component of Tolman's theory. Recent work examining hippocampal representations occurring at fast time scales suggests that these sequences might be important for supporting the inferential mental operations associated with the cognitive map function.

View Article and Find Full Text PDF

Laboratory studies of decision making often take the form of two-alternative, forced-choice paradigms. In natural settings, however, many decision problems arise as stay/go choices. We designed a foraging task to test intertemporal decision making in rats via stay/go decisions.

View Article and Find Full Text PDF

Place cell firing patterns in the rat hippocampus are often organized as sequences. Sequences falling within cycles of the theta (6-10 Hz) local field potential (LFP) oscillation represent segments of ongoing behavioral trajectories. Sequences expressed during sharp wave ripple (SWR) complexes represent spatial trajectories through the environment, in both the same direction as actual trajectories (forward sequences) and in an ordering opposite that of behavior (backward sequences).

View Article and Find Full Text PDF

Disrupting the reactivation of hippocampal neurons during sleep impairs memory consolidation in rats. However, the functional importance of reactivation during awake states is unknown. An experiment in which awake reactivation was disrupted suggests that this phenomenon could adaptively guide behavior by linking previous learning with the current state of the world.

View Article and Find Full Text PDF