Grazing livestock plays an important role in the context of food security, agricultural sustainability and climate change. Understanding how livestock move and interact with their environment may offer new insights on how grazing practices impact soil and ecosystem functions at spatial and temporal scales where knowledge is currently limited. We characterized daily and seasonal grazing patterns using Global Positioning System (GPS) data from two grazing strategies: conventionally- and rotationally-grazed pastures.
View Article and Find Full Text PDFAims: The home-field advantage (HFA) hypothesis predicts faster decomposition of plant residues in soil compared to soils with different plants (), and has been demonstrated in forest and grassland ecosystems. It remains unclear if this legacy effect applies to crop residue decomposition in arable crop rotations. Such knowledge could improve our understanding of decomposition dynamics in arable soils and may allow optimisation of crop residue amendments in arable systems by cleverly combining crop-residue rotations with crop rotations to increase the amount of residue-derived C persisting in soil.
View Article and Find Full Text PDFAgriculture is challenged to produce healthy food and to contribute to cleaner energy whilst mitigating climate change and protecting ecosystems. To achieve this, policy-driven scenarios need to be evaluated with available data and models to explore trade-offs with robust accounting for the uncertainty in predictions. We developed a novel model ensemble using four complementary state-of-the-art agroecosystems models to explore the impacts of land management change.
View Article and Find Full Text PDFUnder future CMIP5 climate change scenarios for 2050, an increase in wheat yield of about 10% is predicted in Great Britain (GB) as a result of the combined effect of CO fertilization and a shift in phenology. Compared to the present day, crops escape increases in the climate impacts of drought and heat stresses on grain yield by developing before these stresses can occur. In the future, yield losses from water stress over a growing season will remain about the same across Great Britain with losses reaching around 20% of potential yield, while losses from drought around flowering will decrease and account for about 9% of water limited yield.
View Article and Find Full Text PDFSoybean (Glycine max) offers an important source of plant-based protein. Currently much of Europe's soybean is imported, but there are strong economic and agronomic arguments for boosting local production. Soybean is grown in central and eastern Europe but is less favoured in the North due to climate.
View Article and Find Full Text PDFTo manage agricultural landscapes more sustainably, we must understand and quantify the synergies and trade-offs between environmental impact, production, and other ecosystem services. Models play an important role in this type of analysis as generally it is infeasible to test multiple scenarios by experiment. These models can be linked with algorithms that optimise for multiple objectives by searching a space of allowable management interventions (the control variables).
View Article and Find Full Text PDFEfficient farm management can be aided by the identification of zones in the landscape. These zones can be informed from different measured variables by ensuring a sense of spatial coherence. Forming spatially coherent zones is an established method in the literature, but has been found to perform poorly when data are sparse.
View Article and Find Full Text PDFAgricultural landscapes provide many functions simultaneously including food production, regulation of water and regulation of greenhouse gases. Thus, it is challenging to make land management decisions, particularly transformative changes, that improve on one function without unintended consequences for other functions. To make informed decisions the trade-offs between different landscape functions must be considered.
View Article and Find Full Text PDFDeveloping sustainable food systems is essential, especially for emerging economies, where food systems are changing rapidly and affect the environment and natural resources. We explored possible future pathways for a sustainable food system in China, using multiple environmental indicators linked to eight of the Sustainable Development Goals (SDGs). Forecasts for 2030 in a business as usual scenario (BAU) indicate increases in animal food consumption as well as increased shortages of the land available and the water needed to produce the required food in China.
View Article and Find Full Text PDFHow we manage farming and food systems to meet rising demand is pivotal to the future of biodiversity. Extensive field data suggest impacts on wild populations would be greatly reduced through boosting yields on existing farmland so as to spare remaining natural habitats. High-yield farming raises other concerns because expressed per unit area it can generate high levels of externalities such as greenhouse gas (GHG) emissions and nutrient losses.
View Article and Find Full Text PDFThe pursuit of global food security and agricultural sustainability, the dual aim of the second sustainable development goal (SDG-2), requires urgent and concerted action from developing and developed countries. This, in turn, depends on clear and universally applicable targets and indicators which are partially lacking. The novel and complex nature of the SDGs poses further challenges to their implementation on the ground, especially in the face of interlinkages across SDG objectives and scales.
View Article and Find Full Text PDFThis paper describes an agricultural model (Roth-CNP) that estimates carbon (C), nitrogen (N) and phosphorus (P) pools, pool changes, their balance and the nutrient fluxes exported from arable and grassland systems in the UK during 1800-2010. The Roth-CNP model was developed as part of an Integrated Model (IM) to simulate C, N and P cycling for the whole of UK, by loosely coupling terrestrial, hydrological and hydro-chemical models. The model was calibrated and tested using long term experiment (LTE) data from Broadbalk (1843) and Park Grass (1856) at Rothamsted.
View Article and Find Full Text PDFWe describe a model framework that simulates spatial and temporal interactions in agricultural landscapes and that can be used to explore trade-offs between production and environment so helping to determine solutions to the problems of sustainable food production. Here we focus on models of agricultural production, water movement and nutrient flow in a landscape. We validate these models against data from two long-term experiments, (the first a continuous wheat experiment and the other a permanent grass-land experiment) and an experiment where water and nutrient flow are measured from isolated catchments.
View Article and Find Full Text PDFEarthworms benefit agriculture by providing several ecosystem services. Therefore, strategies to increase earthworm abundance and activity in agricultural soils should be identified, and encouraged. earthworms primarily feed on organic inputs to soils but it is not known which organic amendments are the most effective for increasing earthworm populations.
View Article and Find Full Text PDFA farmer's decision on whether to control a pest is usually based on the perceived threat of the pest locally and the guidance of commercial advisors. Therefore, farmers in a region are often influenced by similar circumstances, and this can create a coordinated response for pest control that is effective at a landscape scale. This coordinated response is not intentional, but is an emergent property of the system.
View Article and Find Full Text PDFIn an effort to mitigate anthropogenic effects on the global climate system, industrialised countries are required to quantify and report, for various economic sectors, the annual emissions of greenhouse gases from their several sources and the absorption of the same in different sinks. These estimates are uncertain, and this uncertainty must be communicated effectively, if government bodies, research scientists or members of the public are to draw sound conclusions. Our interest is in communicating the uncertainty in estimates of greenhouse gas emissions from agriculture to those who might directly use the results from the inventory.
View Article and Find Full Text PDFCurrent research on macronutrient cycling in UK agricultural systems aims to optimise soil and nutrient management for improved agricultural production and minimise effects on the environment and provision of ecosystem services. Nutrient use inefficiencies can cause environmental pollution through the release of greenhouse gases into the atmosphere and of soluble and particulate forms of N, P and carbon (C) in leachate and run-off into watercourses. Improving nutrient use efficiencies in agriculture calls for the development of sustainable nutrient management strategies: more efficient use of mineral fertilisers, increased recovery and recycling of waste nutrients, and, better exploitation of the substantial inorganic and organic reserves of nutrients in the soil.
View Article and Find Full Text PDFThe nature and effect of the stresses on root growth in crops subject to drying is reviewed. Drought is a complex stress, impacting on plant growth in a number of interacting ways. In response, there are a number of ways in which the growing plant is able to adapt to or alleviate these stresses.
View Article and Find Full Text PDF