Publications by authors named "Andrew W Trafford"

Ischaemic heart disease remains a leading cause of premature mortality and morbidity. Understanding the associated pathophysiological mechanisms of cardiac dysfunction arising from ischaemic heart disease and the identification of sites for new therapeutic interventions requires a preclinical model that reproduces the key clinical characteristics of myocardial ischaemia, reperfusion and infarction. Here, we describe and validate a refined and minimally invasive translationally relevant approach to induce ischaemia, reperfusion and infarction in the sheep.

View Article and Find Full Text PDF

Chronic fetal hypoxia is one of the most common complications of pregnancy and can programme cardiac abnormalities in adult offspring including ventricular remodelling, diastolic dysfunction and sympathetic dominance. However, the underlying mechanisms at the level of the cardiomyocyte are unknown, preventing the identification of targets for therapeutic intervention. Therefore, we aimed to link echocardiographic data with cardiomyocyte function to reveal cellular mechanism for cardiac dysfunction in rat offspring from hypoxic pregnancy.

View Article and Find Full Text PDF

Background: Transverse (t)-tubules drive the rapid and synchronous Ca rise in cardiac myocytes. The virtual complete atrial t-tubule loss in heart failure (HF) decreases Ca release. It is unknown if or how atrial t-tubules can be restored and how this affects systolic Ca.

View Article and Find Full Text PDF

The highly organized transverse tubule (t-tubule) network facilitates cardiac excitation-contraction coupling and synchronous cardiac myocyte contraction. In cardiac failure secondary to myocardial infarction (MI), changes in the structure and organization of t-tubules result in impaired cardiac contractility. However, there is still little knowledge on the regional variation of t-tubule remodelling in cardiac failure post-MI.

View Article and Find Full Text PDF

Cardiac myocytes rely on transverse (t)-tubules to facilitate a rapid rise in calcium throughout the cell. However, despite their importance in triggering synchronous Ca release, t-tubules are highly labile structures. They develop postnatally, increase in density during exercise training and are lost in diseases such as heart failure (HF).

View Article and Find Full Text PDF

Insufficient oxygen supply (hypoxia) during fetal development leads to cardiac remodeling and a predisposition to cardiovascular disease in later life. Previous work has shown hypoxia causes oxidative stress in the fetal heart and alters the activity and expression of mitochondrial proteins in a sex-dependent manner. However, the functional effects of these modifications on mitochondrial respiration remain unknown.

View Article and Find Full Text PDF

Plasma membrane calcium ATPase 1 (PMCA1, Atp2b1) is emerging as a key contributor to cardiac physiology, involved in calcium handling and myocardial signalling. In addition, genome wide association studies have associated PMCA1 in several areas of cardiovascular disease including hypertension and myocardial infarction. Here, we investigated the role of PMCA1 in basal cardiac function and heart rhythm stability.

View Article and Find Full Text PDF

Cardiac contractile strength is recognised as being highly pH-sensitive, but less is known about the influence of pH on cardiac gene expression, which may become relevant in response to changes in myocardial metabolism or vascularization during development or disease. We sought evidence for pH-responsive cardiac genes, and a physiological context for this form of transcriptional regulation. pHLIP, a peptide-based reporter of acidity, revealed a non-uniform pH landscape in early-postnatal myocardium, dissipating in later life.

View Article and Find Full Text PDF

Ventricular arrhythmias can cause death in heart failure (HF). A trigger is the occurrence of Ca waves which activate a Na -Ca exchange (NCX) current, leading to delayed after-depolarisations and triggered action potentials. Waves arise when sarcoplasmic reticulum (SR) Ca content reaches a threshold and are commonly induced experimentally by raising external Ca , although the mechanism by which this causes waves is unclear and was the focus of this study.

View Article and Find Full Text PDF

In mammalian cardiac myocytes, the plasma membrane includes the surface sarcolemma but also a network of membrane invaginations called transverse (t-) tubules. These structures carry the action potential deep into the cell interior, allowing efficient triggering of Ca release and initiation of contraction. Once thought to serve as rather static enablers of excitation-contraction coupling, recent work has provided a newfound appreciation of the plasticity of the t-tubule network's structure and function.

View Article and Find Full Text PDF

Hydroxychloroquine (HCQ), clinically established in antimalarial and autoimmune therapy, recently raised cardiac arrhythmogenic concerns when used alone or with azithromycin (HCQ+AZM) in Covid-19. We report complementary, experimental, studies of its electrophysiological effects. In patch clamped HEK293 cells expressing human cardiac ion channels, HCQ inhibited I and I at a therapeutic concentrations (ICs: 10 ± 0.

View Article and Find Full Text PDF

Adopting an integrative approach, by combining studies of cardiovascular function with those at cellular and molecular levels, this study investigated whether maternal treatment with melatonin protects against programmed cardiovascular dysfunction in the offspring using an established rodent model of hypoxic pregnancy. Wistar rats were divided into normoxic (N) or hypoxic (H, 10% O ) pregnancy ± melatonin (M) treatment (5 μg·ml .day ) in the maternal drinking water.

View Article and Find Full Text PDF

Background: Large animal models play an important role in our understanding of the pathophysiology of atrial fibrillation (AF). Our aim was to determine whether prospectively collected baseline variables could predict the development of sustained AF in sheep, thereby reducing the number of animals required in future studies. Our hypothesis was that the relationship between atrial dimensions, refractory periods and conduction velocity (otherwise known as the critical mass hypothesis) could be used for the first time to predict the development of sustained AF.

View Article and Find Full Text PDF

Electrical activity in the heart exhibits 24-hour rhythmicity, and potentially fatal arrhythmias are more likely to occur at specific times of day. Here, we demonstrate that circadian clocks within the brain and heart set daily rhythms in sinoatrial (SA) and atrioventricular (AV) node activity, and impose a time-of-day dependent susceptibility to ventricular arrhythmia. Critically, the balance of circadian inputs from the autonomic nervous system and cardiomyocyte clock to the SA and AV nodes differ, and this renders the cardiac conduction system sensitive to decoupling during abrupt shifts in behavioural routine and sleep-wake timing.

View Article and Find Full Text PDF

Insufficient oxygen supply (hypoxia) during fetal and embryonic development can lead to latent phenotypical changes in the adult cardiovascular system, including altered cardiac function and increased susceptibility to ischemia reperfusion injury. While the cellular mechanisms underlying this phenomenon are largely unknown, several studies have pointed towards metabolic disturbances in the heart of offspring from hypoxic pregnancies. To this end, we investigated mitochondrial function in the offspring of a mouse model of prenatal hypoxia.

View Article and Find Full Text PDF

Normal cardiac function requires that intracellular Ca concentration be reduced to low levels in diastole so that the ventricle can relax and refill with blood. Heart failure is often associated with impaired cardiac relaxation. Little, however, is known about how diastolic intracellular Ca concentration is regulated.

View Article and Find Full Text PDF

Autonomic dysregulation plays a key role in the development and progression of heart failure (HF). Vagal nerve stimulation (VNS) may be a promising therapeutic approach. However, the outcomes from clinical trials evaluating VNS in HF have been mixed, and the mechanisms underlying this treatment remain poorly understood.

View Article and Find Full Text PDF

Background: CRISPR-Cas9 gene-editing technology has facilitated the generation of knockout mice, providing an alternative to cumbersome and time-consuming traditional embryonic stem cell-based methods. An earlier study reported up to 16% efficiency in generating conditional knockout (cKO or floxed) alleles by microinjection of 2 single guide RNAs (sgRNA) and 2 single-stranded oligonucleotides as donors (referred herein as "two-donor floxing" method).

Results: We re-evaluate the two-donor method from a consortium of 20 laboratories across the world.

View Article and Find Full Text PDF

Heart failure (HF) is characterized by poor survival, a loss of catecholamine reserve and cellular structural remodeling in the form of disorganization and loss of the transverse tubule network. Indeed, survival rates for HF are worse than many common cancers and have not improved over time. Tadalafil is a clinically relevant drug that blocks phosphodiesterase 5 with high specificity and is used to treat erectile dysfunction.

View Article and Find Full Text PDF
Article Synopsis
  • Atrial fibrillation (AF) is more common in older adults but rare in younger individuals, and the exact age-related changes contributing to AF are still not fully understood.
  • Research using sheep models indicated that older sheep had a higher susceptibility to AF and exhibited action potential (AP) alternans at lower stimulation frequencies compared to younger sheep.
  • The study found that both AP alternans and calcium ([Ca]) alternans could occur simultaneously but also separately, suggesting that calcium handling instability may trigger alternans at low rates, while AP restitution maintains it at higher rates.
View Article and Find Full Text PDF