Ischemia-reperfusion injuries are known to cause a range of retinal pathologies, including diabetic retinopathy, glaucoma, retinal vascular occlusions, and other vaso-occlusive conditions. This manuscript presents a method for inducing ischemia-reperfusion injury in a mouse model. The method utilized anterior chamber cannulation attached to a saline reservoir, generating hydrostatic pressure to raise the intraocular pressure to 90-100 mmHg.
View Article and Find Full Text PDFAugmenting the natural melanocortin pathway in mouse eyes with uveitis or diabetes protects the retinas from degeneration. The retinal cells are protected from oxidative and apoptotic signals of death. Therefore, we investigated the effects of a therapeutic application of the melanocortin alpha-melanocyte-stimulating hormone (α-MSH) on an ischemia and reperfusion (I/R) model of retinal degenerative disease.
View Article and Find Full Text PDFThe endogenous neuropeptide α-Melanocyte Stimulating Hormone (α-MSH) is a potent suppressor of inflammation and has an essential role in maintaining the normal anti-inflammatory microenvironment of the retina. While the therapeutic use of α-MSH peptide in uveitis and diabetic retinopathy models has been demonstrated, its short half-life and instability limit its use as a therapeutic drug. A comparable analog, PL-8331, which has a stronger affinity to melanocortin receptors, longer half-life, and, so far, is functionally identical to α-MSH, has the potential to deliver melanocortin-based therapy.
View Article and Find Full Text PDFThe melanocortins are derived from proopiomelanocortin (POMC) and include three forms of melanocyte-stimulating hormone (α-, β-, γ-, MSH) and adrenocorticotropic hormone. α-MSH, a potent POMC-derived neuropeptide, binds to melanocortin 4 receptor (MC4R) in the brain to reduce food intake (via appetite suppression) and increase energy expenditure (via sympathetic nervous system) after integration of central neuronal signal (e.g.
View Article and Find Full Text PDFRetinal ischemia/reperfusion (I/R) injury is a major cause of vision loss in many ocular diseases. Retinal I/R injury is common in diabetic retinopathy, which as a result of hyperglycemia damages the retina and can cause blindness if left untreated. Inflammation is a major contributing factor in the pathogenesis of I/R injury.
View Article and Find Full Text PDFThe melanocortin system plays an essential role in the regulation of immune activity. The anti-inflammatory microenvironment of the eye is dependent on the expression of the melanocortin-neuropeptide alpha-melanocyte stimulating hormone (α-MSH). In addition, the melanocortin system may have a role in retinal development and retinal cell survival under conditions of retinal degeneration.
View Article and Find Full Text PDFCorneal transplantation is the most common form of tissue transplantation. The success of corneal transplantation mainly relies on the integrity of corneal endothelial cells (CEnCs), which maintain tissue transparency by pumping out excess water from the cornea. After transplantation, the rate of CEnC loss far exceeds that seen with normal aging, which can threaten sight.
View Article and Find Full Text PDFPersons with type 1 diabetes have an increased risk of stroke compared with the general population. α-Melanocyte-stimulating hormone (α-MSH) is a neuropeptide that has protective effects against ischemia/reperfusion (I/R) induced organ damages. In this study, we aimed to investigate the neuroprotective role of this peptide on I/R induced brain damage after experimental stroke associated with hyperglycemia using C57BL/6J Ins2 mice.
View Article and Find Full Text PDFThe ocular tissue microenvironment is immune privileged and uses several mechanisms of immunosuppression to prevent the induction of inflammation. Besides being a blood-barrier and source of photoreceptor nutrients, the retinal pigment epithelial cells (RPE) regulate the activity of immune cells within the retina. These mechanisms involve the expression of immunomodulating molecules that make macrophages and microglial cells suppress inflammation and promote immune tolerance.
View Article and Find Full Text PDFA central characterization of retinal immunobiology is the prevention of proinflammatory activity by macrophages. The retinal pigment epithelial cells (RPEs) are a major source of soluble anti-inflammatory factors. This includes a soluble factor that induces macrophage apoptosis when the activity of the immunomodulating neuropeptide alpha-melanocyte-stimulating hormone (α-MSH) is neutralized.
View Article and Find Full Text PDFPurpose: The therapeutic use of the RPE-neuropeptide α-MSH suppresses experimental autoimmune uveitis (EAU). This suppression is partially through the α-MSH melanocortin 5 receptor (MC5r). Therefore, we examined the possible role of MC5r-expression in the recovery of RPE suppression of phagolysosome-activation in macrophages following α-MSH-treatment of EAU.
View Article and Find Full Text PDFImportance: Corneal endothelial cell (CEnC) damage and loss are major issues in eye banking and transplantation. The underlying mechanisms for CEnC loss are incompletely understood, and cytoprotective strategies that enhance CEnC viability could have a major effect on donor tissue quality and graft survival.
Objective: To investigate the cytoprotective role of neuropeptide α-melanocyte-stimulating hormone (α-MSH) in preventing CEnC loss in eye bank cold-stored corneas under oxidative and inflammatory cytokine-induced stress.
The melanocortin α-melanocyte stimulating hormone (α-MSH), an endogenous peptide with high affinity for the melanocortin 1 receptor (MC1r), has demonstrated prevention and reversal of intestinal and ocular inflammation in animal models. Preclinical studies were performed to determine whether two MC1r receptor agonists, PL-8177 and PL-8331, exhibit actions and efficacy similar to α-MSH in preventing and reversing intestinal and ocular inflammation. Both PL-8177 and PL-8331 were assessed in a Eurofins LeadProfilingScreen selectivity panel including 72 assays.
View Article and Find Full Text PDFThe ocular microenvironment has evolutionarily adapted several mechanisms of immunosuppression to minimize the induction of inflammation. Neuropeptides produced by the retinal pigment epithelial cells regulate macrophage activity. Two neuropeptides, α-melanocyte-stimulating hormone (α -MSH) and neuropeptide Y (NPY), are constitutively expressed by the retinal pigment epithelial cells.
View Article and Find Full Text PDFThe ocular microenvironment has adapted several negative regulators of inflammation to maintain immune privilege and health of the visual axis. Several constitutively produced negative regulators within the eye TGF-β2, α-melanocyte stimulating hormone (α-MSH), Fas ligand (FasL), and PD-L1 standout because of their capacity to influence multiple pathways of inflammation, and that they are part of promoting immune tolerance. These regulators demonstrate the capacity of immune privilege to prevent the activation of inflammation, and to suppress activation of effector immune cells even under conditions of ocular inflammation induced by endotoxin and autoimmune disease.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
February 2017
Purpose: The eye is an immune-privileged microenvironment that has adapted several mechanisms of immune regulation to prevent inflammation. One of these potential mechanisms is retinal pigment epithelial cells (RPE) altering phagocytosis in macrophages.
Methods: The conditioned media of RPE eyecups from eyes of healthy mice and mice with experimental autoimmune uveitis (EAU) were used to treat primary macrophage phagocytizing pHrodo bacterial bioparticles.
Autoantigen-specific regulatory immunity emerges in the spleen of mice recovering from experimental autoimmune uveitis (EAU), a murine model for human autoimmune uveoretinitis. This regulatory immunity provides induced tolerance to ocular autoantigen, and requires melanocortin 5 receptor (MC5r) expression on antigen presenting cells with adenosine 2 A receptor (A2Ar) expression on T cells. During EAU it is not well understood what roles MC5r and A2Ar have on promoting regulatory immunity.
View Article and Find Full Text PDFAllografts are afforded a level of protection from rejection within immune-privileged tissues. Immune-privileged tissues involve mechanisms that suppress inflammation and promote immune tolerance. There are anatomical features, soluble factors, membrane-associated proteins, and alternative antigen-presenting cells (APC) that contribute to allograft survival in the immune-privileged tissue.
View Article and Find Full Text PDFMelanocortins are a highly conserved family of peptides and receptors that includes multiple proopiomelanocortin-derived peptides and five defined melanocortin receptors. The melanocortins have an important role in maintaining immune homeostasis and in suppressing inflammation. Within the healthy eye, the melanocortins have a central role in preventing inflammation and maintaining immune privilege.
View Article and Find Full Text PDFThe recovery of EAU, a mouse model of endogenous human autoimmune uveitis, is marked with the emergence of autoantigen-specific regulatory immunity in the spleen that protects the mice from recurrence of EAU. This regulatory immunity is mediated by a melanocortin-driven suppressor APC that presents autoantigen and uses adenosine to activate an antigen-specific CD4(+) Tregs through the A2Ar. These cells are highly effective in suppressing uveitis, and they appear to be inducible Tregs.
View Article and Find Full Text PDFJ Neurol Neurosurg Psychiatry
July 2015
Clinical case reports and prospective trials have demonstrated a reproducible benefit of hypothalamic-pituitary-adrenal (HPA) axis modulation on the rate of recovery from acute inflammatory central nervous system (CNS) demyelination. As a result, corticosteroid preparations and adrenocorticotrophic hormones are the current mainstays of therapy for the treatment of acute optic neuritis (AON) and acute demyelination in multiple sclerosis.Despite facilitating the pace of recovery, HPA axis modulation and corticosteroids have failed to demonstrate long-term benefit on functional recovery.
View Article and Find Full Text PDFPurpose: The clinical phenotype of advanced stage retinopathy of prematurity (ROP, stages 4 and 5) cannot be replicated in an animal model. To dissect the molecular events that can lead up to advanced ROP, we examined subretinal fluid (SRF) and surgically dissected retrolental membranes from patients with advanced ROP to evaluate its influences on cell proliferation, angiogenic properties, and macrophage polarity.
Methods: We compared our findings to SRF collected from patients with uncomplicated rhegmatogenous retinal detachment (RD) without proliferative vitreoretinopathy and surgically dissected epiretinal membrane from eyes with macular pucker.