Publications by authors named "Andrew W Stumpff-Kane"

Protein-ligand docking programs can generate a large number of possible binding orientations for each ligand candidate. The challenge is to identify the orientations closest to the native binding mode using a scoring method. Many different scoring functions have been developed for protein-ligand scoring, but their performance on binding mode prediction is often target-dependent.

View Article and Find Full Text PDF

Protein structure refinement from comparative models with the goal of predicting structures at near-experimental accuracy remains an unsolved problem. Structure refinement might be achieved with an iterative protocol where the most native-like structure from a set of decoys generated from an initial model in one cycle is used as the starting structure for the next cycle. Conformational sampling based on the coarse-grained SICHO model, atomic level of detail molecular dynamics simulations, and normal-mode analysis is compared in the context of such a protocol.

View Article and Find Full Text PDF

His6-tagged xanthine/alpha-ketoglutarate (alphaKG) dioxygenase (XanA) of Aspergillus nidulans was purified from both the fungal mycelium and recombinant Escherichia coli cells, and the properties of the two forms of the protein were compared. Evidence was obtained for both N- and O-linked glycosylation on the fungus-derived XanA, which aggregates into an apparent dodecamer, while bacterium-derived XanA is free of glycosylation and behaves as a monomer. Immunological methods identify phosphothreonine in both forms of XanA, with phosphoserine also detected in the bacterium-derived protein.

View Article and Find Full Text PDF

A correlation-based approach is introduced for enhancing the ability of structure-scoring methods to identify and distinguish native-like conformations. The proposed method relies on a funnel-shaped scoring function that decreases steadily toward the native state. It takes advantage of the idea that the structure from a given ensemble that is closest to the native basin leads to the highest correlation coefficient between a given score and distance to that structure as an approximation of the native state for the entire ensemble.

View Article and Find Full Text PDF