Objective: This study investigates the development of the thoracic cross-section at the nipple line level during the early stages of life. Unlike the descriptive awareness regarding chest development course, there exist no quantitative references concerning shape, circumference and possible dependencies to age, gender or body weight. The proposed mathematical relations are expected to help create guidelines for more realistic modelling and potential detection of abnormalities.
View Article and Find Full Text PDFThis paper presents a new method for selecting a patient specific forward model to compensate for anatomical variations in electrical impedance tomography (EIT) monitoring of neonates. The method uses a combination of shape sensors and absolute reconstruction. It takes advantage of a probabilistic approach which automatically selects the best estimated forward model fit from pre-stored library models.
View Article and Find Full Text PDFPhantom experiments are a crucial step for testing new hardware or imaging algorithms for electrical impedance tomography (EIT) studies. However, constructing an accurate phantom for EIT research remains critical; some studies have attempted to model the skull and breasts, and even fewer, as yet, have considered the thorax. In this study, a critical comparison between the electrical properties (impedance) of three materials is undertaken: a polyurethane foam, a silicone mixture and a thermoplastic polyurethane filament.
View Article and Find Full Text PDFObjective: Colorectal cancer is the fourth most common cancer worldwide, with a lifetime risk of around 20%. Current techniques do not allow clinicians to objectively assess tissue abnormality during endoscopy and perioperatively. A method capable of objectively assessing samples in real time and which can be included in minimally invasive diagnostic and management strategies would be highly transformative.
View Article and Find Full Text PDFElectrical impedance tomography (EIT) could be significantly advantageous to continuous monitoring of lung development in newborn and, in particular, preterm infants as it is non-invasive and safe to use within the intensive care unit. It has been demonstrated that accurate boundary form of the forward model is important to minimize artefacts in reconstructed electrical impedance images. This paper presents the outcomes of initial investigations for acquiring patient-specific thorax boundary information using a network of flexible sensors that imposes no restrictions on the patient's normal breathing and movements.
View Article and Find Full Text PDFElectrical Impedance Tomography (EIT) is an imaging technique based on multiple bio impedance measurements to produce a map (image) of impedance or changes in impedance across a region. Its origins lay in geophysics where it is still used to today. This review highlights potential clinical applications of EIT.
View Article and Find Full Text PDFElectrical impedance tomography (EIT) is an imaging technique that has the potential to be used for studying neonate lung function. The properties of the electrodes are very important in multi-frequency EIT (MFEIT) systems, particularly for neonates, as the skin cannot be abraded to reduce contact impedance. In this work, the impedance of various clinical electrodes as a function of frequency is investigated to identify the optimum electrode type for this application.
View Article and Find Full Text PDFElectrical impedance tomography (EIT) is an attractive method for clinically monitoring patients during mechanical ventilation, because it can provide a non-invasive continuous image of pulmonary impedance which indicates the distribution of ventilation. However, most clinical and physiological research in lung EIT is done using older and proprietary algorithms; this is an obstacle to interpretation of EIT images because the reconstructed images are not well characterized. To address this issue, we develop a consensus linear reconstruction algorithm for lung EIT, called GREIT (Graz consensus Reconstruction algorithm for EIT).
View Article and Find Full Text PDFThe development of diffuse optical tomography (DOT) instrumentation for neuroimaging of humans is challenging due to the large size and the geometry of the head and the desire to distinguish signals at different depths. One approach to this problem is to use dense imaging arrays that incorporate measurements at different source-detector distances. We previously developed a high-density DOT system that is able to obtain retinotopic measurements in agreement with functional magnetic resonance imaging and positron emission tomography.
View Article and Find Full Text PDFElectrical impedance tomography (EIT) is a recently developed technique which enables the internal conductivity of an object to be imaged using rings of external electrodes. In a recent study, EIT during cortical evoked responses showed encouraging changes in the raw impedance measurements, but reconstructed images were noisy. A simplified reconstruction algorithm was used which modelled the head as a homogeneous sphere.
View Article and Find Full Text PDF