Brain Neurosci Adv
November 2019
Ethanol is a psychoactive substance causing both short- and long-term behavioural changes in humans and animal models. We have used the fruit fly to investigate the effect of ethanol exposure on the expression of the Gαq protein subunit. Repetitive exposure to ethanol causes a reduction in sensitivity (tolerance) to ethanol, which we have measured as the time for 50% of a set of flies to become sedated after exposure to ethanol (ST50).
View Article and Find Full Text PDFEndogenous biotin or biotinylated protein binding activity is a major drawback to biotin-avidin/streptavidin detection system. The avidin/streptavidin conjugate used to detect the complex of the biotinylated secondary antibody and the primary antibody binds to endogenous biotin or biotinylated proteins leading to non-specific signals. In Western blot, the endogenous biotin or biotinylated protein binding activity is usually manifested in the form of ~72kDa, ~75kDa and ~150kDa protein bands, which often mask the signals of interest.
View Article and Find Full Text PDFPrion diseases are neurodegenerative diseases that can be transmitted between individuals. The exact cause of these diseases remains unknown. However, one of the key events associates with the disease is the aggregation of a cellular protein, the prion protein.
View Article and Find Full Text PDFThe binding of divalent copper ions to the full-length recombinant murine prion protein PrP23-231 at neutral pH was studied using vibrational Raman optical activity (ROA) and ultraviolet circular dichroism (UV CD). The effect of the Cu2+ ions on PrP structure depends on whether they are added after refolding of the protein in water or are present during the refolding process. In the first case ROA reveals that the hydrated alpha-helix is lost, with UV CD revealing a drop from approximately 25% to approximately 18% in the total alpha-helix content.
View Article and Find Full Text PDFThe prion protein is a copper binding glycoprotein expressed in neurones and other cells. Conversion of this protein to an abnormal isoform is central to the cause of prion diseases or transmissible spongiform encephalopathies. Detecting slight structural differences between different forms of the prion protein could be essential to understanding the role of the protein in health and disease.
View Article and Find Full Text PDFThe prion protein (PrP) is a metalloprotein with an unstructured region covering residues 60-91 that bind two to six Cu(II) ions cooperatively. Cu can bind to PrP regions C-terminally to the octarepeat region involving residues His111 and/or His96. In addition to Cu(II), PrP binds Zn(II), Mn(II) and Ni(II) with binding constants several orders of magnitudes lower than those determined for Cu.
View Article and Find Full Text PDFPrion diseases are associated with the misfolding of the PrP (prion protein) from a largely alpha-helical isoform to a beta-sheet-rich oligomer. CD has shown that lowering the pH to 4 under mildly denaturing conditions causes recombinant PrP to convert from an alpha-helical protein into one that contains a high proportion of beta-sheet-like conformation. In the present study, we characterize this soluble pH 4 folding intermediate using NMR.
View Article and Find Full Text PDFThe cellular prion protein is known to be a copper-binding protein. Despite the wide range of studies on the copper binding of PrP, there have been no studies to determine the affinity of the protein on both full-length prion protein and under physiological conditions. We have used two techniques, isothermal titration calorimetry and competitive metal capture analysis, to determine the affinity of copper for wild type mouse PrP and a series of mutants.
View Article and Find Full Text PDFThe conversion of the normal cellular prion protein, PrP(C), into the protease-resistant, scrapie PrP(Sc) aggregate is the cause of prion diseases. We developed a novel enzyme-linked immunosorbent assay (ELISA) that is specific for PrP aggregate by screening 30 anti-PrP monoclonal antibodies (MAbs) for their ability to react with recombinant mouse, ovine, bovine, or human PrP dimers. One MAb that reacts with all four recombinant PrP dimers also reacts with PrP(Sc) aggregates in ME7-, 139A-, or 22L-infected mouse brains.
View Article and Find Full Text PDFNo cure as of yet exists for any of the transmissible spongiform encephalopathies. In this paper, we describe the synthesis of analogues of Congo red and evaluation against a cellular model of infection, the SMB (scrapie mouse brain) persistently infected cell line, for their ability to inhibit the infectivity of the abnormal form of prion protein (PrP-res). The compounds have also been tested for their ability to inhibit the polymerization of PrPC by PrP-res.
View Article and Find Full Text PDFBovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) are two new members of the family of neurodegenerative conditions termed prion diseases. Oxidative damage has been shown to occur in prion diseases and is potentially responsible for the rapid neurodegeneration that is central to the pathogenesis of these diseases. An important nonenzymatic antioxidant in the brain is uric acid.
View Article and Find Full Text PDFCopC from Pseudomonas syringae was found to be a protein capable of binding both Cu(I) and Cu(II) at two different sites. The solution structure of the apo protein is available, and structural information has been obtained on the Cu(I) bound form. We attempt here to set the limits for the determination of the solution structure of a Cu(II) protein, such as the Cu(II) bound form of CopC, in which the Cu(II) ion takes a type II coordination.
View Article and Find Full Text PDFThe protein CopC from Pseudomonas syringae has been found capable of binding copper(I) and copper(II) at two different sites, occupied either one at a time or simultaneously. The protein, consisting of 102 amino acids, is known to bind copper(II) in a position that is now found consistent with a coordination arrangement including His-1, Glu-27, Asp-89, and His-91. A full solution structure analysis is reported here for Cu(I)-CopC.
View Article and Find Full Text PDFThe structure of the metal-free form of CopC, a protein involved in copper homeostasis, has been obtained. The fold is a Greek key beta barrel similar to that of functionally unrelated blue copper proteins but with important structural variations. The protein binds one equivalent of copper (II) with relatively high affinity and contains a cluster of conserved residues (His1, Glu27, Asp89, and His91) which could form a water-accessible metal binding site.
View Article and Find Full Text PDFThe solution structure of oxidized cytochrome c(553) (71 amino acid residues) from the Gram-positive bacterium Bacillus pasteurii is here reported and compared with the available crystal structure. The solution structure is obtained from 1609 meaningful NOE data (22.7 per residue), 76 dihedral angles, and 59 pseudocontact shifts.
View Article and Find Full Text PDF