Publications by authors named "Andrew Tag"

The rice blast fungus Magnaporthe oryzae differentiates specialized cells called appressoria that are required for fungal penetration into host leaves. In this study, we identified the novel basic leucine zipper (bZIP) transcription factor BIP1 (B-ZIP Involved in Pathogenesis-1) that is essential for pathogenicity. BIP1 is required for the infection of plant leaves, even if they are wounded, but not for appressorium-mediated penetration of artificial cellophane membranes.

View Article and Find Full Text PDF

The tapetum is a single cell layer surrounding the anther locule and its major function is to provide nutrients for pollen development. The ablation of tapetal cells interferes with pollen production and results in plant male sterility. In spite of the importance of this tissue in the quality and production of pollen grains, studies on promoter gene regulation of tapetal expressed genes are very few and there are no reports on specific cis regulatory sequences that control tapetal gene expression.

View Article and Find Full Text PDF

Light signaling pathways and circadian clocks are inextricably linked and have profound effects on behavior in most organisms. Here, we used chromatin immunoprecipitation (ChIP) sequencing to uncover direct targets of the Neurospora crassa circadian regulator White Collar Complex (WCC). The WCC is a blue-light receptor and the key transcription factor of the circadian oscillator.

View Article and Find Full Text PDF

Tri10, a regulatory gene in trichothecene mycotoxin-producing Fusarium species, is required for trichothecene biosynthesis and the coordinated expression of four trichothecene pathway-specific genes (Tri4, Tri5, Tri6, and Tri101) and the isoprenoid biosynthetic gene for farnesyl pyrophosphate synthetase (FPPS). We showed that six more trichothecene genes (Tri3, Tri7, Tri8, Tri9, Tri11, and Tri12) are regulated by Tri10. We also constructed a cDNA library from a strain of Fusarium sporotrichioides that overexpresses Tri10 ( upward arrow Tri10) and used cDNA derived from the upward arrow Tri10 strain and a non-Tri10-expressing strain (DeltaTri10) to differentially screen macroarrays prepared from the cDNA library.

View Article and Find Full Text PDF