Aging and many illnesses and injuries impair skeletal muscle mass and function, but the molecular mechanisms are not well understood. To better understand the mechanisms, we generated and studied transgenic mice with skeletal muscle-specific expression of growth arrest and DNA damage inducible α (GADD45A), a signaling protein whose expression in skeletal muscle rises during aging and a wide range of illnesses and injuries. We found that GADD45A induced several cellular changes that are characteristic of skeletal muscle atrophy, including a reduction in skeletal muscle mitochondria and oxidative capacity, selective atrophy of glycolytic muscle fibers, and paradoxical expression of oxidative myosin heavy chains despite mitochondrial loss.
View Article and Find Full Text PDFAging slowly erodes skeletal muscle strength and mass, eventually leading to profound functional deficits and muscle atrophy. The molecular mechanisms of skeletal muscle aging are not well understood. To better understand mechanisms of muscle aging, we investigated the potential role of ATF4, a transcription regulatory protein that can rapidly promote skeletal muscle atrophy in young animals deprived of adequate nutrition or activity.
View Article and Find Full Text PDF