Cancer is an established risk factor for venous thromboembolism (VTE) and VTE is the second leading cause of death in patients with cancer. The incidence of cancer-related thrombosis is rising and is associated with worse outcomes. Despite our growing understanding on tumor-driven procoagulant mechanisms including cancer-released procoagulant proteases, expression of tissue factor on cancer cells and derived microvesicles, as well as alterations in the extracellular matrix of the cancer cell milieu, anticoagulation therapy in cancer patients has remained challenging.
View Article and Find Full Text PDFThe conformational interconversions of four [2]catenanes (1-4) containing a dibenzo-34-crown-10 ether (BPP34C10) interlocked with rings containing two 4,4'-dipyridiniums tethered by 1,3-bis(ethyloxy)phenyl and bis(p-benzyl)methyl spacers have been studied by VT 1H NMR spectroscopy. Symmetrically placed blocking groups on thickened tethers enabled either pathway for circumrotation of the BPP34C10 between isoenergetic sites to be blocked. On the basis of chemical shifts of the BPP34C10, its internal p-hydroquinone forms pi-pi-stacking interactions with only one 4,4'-dipyridinium ring at a time.
View Article and Find Full Text PDF